• 제목/요약/키워드: 포일베어링

검색결과 89건 처리시간 0.02초

무인기용 소형 가스터빈 엔진에 대한 포일 공기 베어링 적용 연구 (Application of Foil Air Bearing to Small Gas Turbine Engine for UAV)

  • 김경수;이시우;김승우;이인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.261-266
    • /
    • 2003
  • 포일 베어링은 공기의 점성과 포일 형태의 구조물을 이용하는 비접촉 베어링으로서, 구름베어링에 비하여 별도의 윤활장치가 필요 없고, 무한수명이 가능하며, 구름베어링을 사용할 수 없는 초고속 회전체와 50$0^{\circ}C$ 이상의 고온 환경에도 적용이 가능하다는 장점이 있다. 최근에는 전통적으로 널리 사용되어 왔던 소형 터보기기 분야뿐만 아니라, 소형 가스터빈 엔진과 같이 극한 온도 조건에서도 작동할 수 있는 포일 베어링에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 포일 공기 베어링 원리에 대한 소개와 함께, 현재 당사에서 볼베어링을 사용하여 개발 중인 65마력급 무인기용 터보샤프트 엔진의 고온부 베어링으로 적용하기 위한 가능성 연구를 수행하였다.

  • PDF

고속 터어보기계용 공기포일베어링에 대한 동특성과 실험적 연구 (Dynamic Characteristics and Experimental Study on the Foil Bearings for High Speed Turbo Machineries)

  • 황평;권성인
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.159-166
    • /
    • 1998
  • 본 연구에서는 공기포일 베어링으로 지지된 로터 베어링 시스템을 구성하고 실험을 수행함으로써 시스템의 진동을 측정하고 그 결과를 해석함으로써 로터 베어링 시스템의 안정성 검토한다. 또, 초기 구동 마찰을 고려하여 공기윤활로만 구동되는 경우와 초기에 베어링 표면에 오일이 도포된 경우를 비교한다. Transient data를 해석 함으로써 로터 베어링 시스템의 startup 및 shutdown에 대한 특성 파악이 가능해지며 시스템의 동적 특성에 대한 더욱 정확한 해석을 가능케한다.

  • PDF

BLDC 전동기와 공기포일베어링을 이용한 고효율 터보블로워 (High-Efficiency TurboBlowers using High-Speed BLDC Motors and Foil Air Bearings)

  • 오종식;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.309-314
    • /
    • 2003
  • High-efficiency turboblowers in the next generation have been successfully developed and commercialized first in the world, using the high-speed BLDC motors and the foil air bearings. About 20-35% savings in electricity consumption in the field are found in comparison with the conventional roots rotary blowers and the integral gear-driven turboblowers. Current TB75 and TB150 products are replacing the existing blowers in the worldwide market.

  • PDF

이중범프포일 공기베어링의 성능에 미치는 마찰효과 (Friction Effects on the Performance of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제23권4호
    • /
    • pp.162-169
    • /
    • 2007
  • This paper deals with friction effects on the performance of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. The double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

범프 마찰을 고려한 공기포일베어링의 성능해석 (Performance Analysis of Air Foil Bearings with Bump Friction)

  • 김영철;이동현;김경웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.

  • PDF

범프포일베어링의 탄성유체윤활 특성 (Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings)

  • 김영철;이동현;김경웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

범프마찰을 고려한 공기포일베어링의 성능해석 (Performance Analysis of Air Foil Bearings with Bump Friction)

  • 김영철;이동현;김경웅
    • 한국유체기계학회 논문집
    • /
    • 제9권1호
    • /
    • pp.47-55
    • /
    • 2006
  • This paper presents the theoretical model to investigate the effect of Coulomb damping in the sub-structure of a foil bearing. Foil deflection is restricted by friction of bumps. Equivalent viscous damping of the bump foils is derived from the Coulomb friction. Dynamic equation of the bumps is constituted by stiffness and damping terms. This point give the difference from Heshmat's frictionless and simple compliance bump model. The fluid is modeled with the compressible Reynolds equation. A perturbation approach is used to determine the static and dynamic performance of the bearing from the coupled fluid-structural model. The analysis result shows that the static and dynamic performance is enhanced by bump friction. This analysis technique would be extended to development of a high performance bearing.

공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향 (Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings)

  • 김태호;이용복;김창호;김광호;이남수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향 (Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings)

  • 김태호;이용복;김창호;이남수;김광호;신유환
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.

38kW, 100000 RPM 고속모터에 대한 포일 가스 베어링 응용 개발 (Application of Foil Gas Bearing to the 38kW, 100000 RPM Class High Speed Motor)

  • 김경수;박기철;김승우;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.127-131
    • /
    • 2003
  • Foil gas bearing is a noncontact bearing operated by coupled interaction between hydrodynamic pressure of viscous fluid and elastic deformation of foil structure. It has valuable advantages, such as low power loss, long life, oilless environment and low vibration, over conventional bearings for the high speed applications. A high speed BLDC motor adopting the foil bearing has been developed. It is designed to have 38㎾ power at 100,000 RPM for a cryogenic cooler whose operating fluid is neon. In this paper, structural development details especially for the foil gas bearing and rotordynamics are presented.

  • PDF