• Title/Summary/Keyword: 포인트클라우드 데이터

Search Result 151, Processing Time 0.026 seconds

LIDAR Dataset Generation Method for Validation of Classification Algorithms using 3D Point Cloud (3D 포인트 클라우드 기반의 분류 알고리즘 검증을 위한 LIDAR 데이터셋 생성 기법)

  • Lee, Seongjo;Kang, Dahyeon;Cho, Seoungjae;Sim, Sungdae;Park, Yong Woon;Um, Kyhyun;Cho, Kyungeun
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.10-11
    • /
    • 2015
  • 최근 자율 주행 분야의 연구에서 LIDAR를 활용한 분류 기법들이 연구되고 있다. 그러나 2D 영상 처리와 비교하여, 대량의 3D 포인트를 사용하는 분류 알고리즘의 성능을 평가하기 위한 지상 검증자료를 쉽게 획득하기 어렵다. 본 연구는 LIDAR를 가상 공간에서 시뮬레이션 함으로써 감지한 물체의 정보를 기록함으로써 3D 포인트 클라우드를 사용하는 다양한 분류 알고리즘의 검증을 위한 지상검증자료를 생성하는 기법을 설명한다. 본 기법은 실제 LIDAR를 사용하는 것보다 적은 비용으로 다양한 환경에서의 분류 알고리즘 성능 검증을 가능하게 한다.

PointNet and RandLA-Net Algorithms for Object Detection Using 3D Point Clouds (3차원 포인트 클라우드 데이터를 활용한 객체 탐지 기법인 PointNet과 RandLA-Net)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.330-337
    • /
    • 2022
  • Research on object detection algorithms using 2D data has already progressed to the level of commercialization and is being applied to various manufacturing industries. Object detection technology using 2D data has an effective advantage, there are technical limitations to accurate data generation and analysis. Since 2D data is two-axis data without a sense of depth, ambiguity arises when approached from a practical point of view. Advanced countries such as the United States are leading 3D data collection and research using 3D laser scanners. Existing processing and detection algorithms such as ICP and RANSAC show high accuracy, but are used as a processing speed problem in the processing of large-scale point cloud data. In this study, PointNet a representative technique for detecting objects using widely used 3D point cloud data is analyzed and described. And RandLA-Net, which overcomes the limitations of PointNet's performance and object prediction accuracy, is described a review of detection technology using point cloud data was conducted.

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.

A Basic Study on Trade-off Analysis of Downsampling for Indoor Point Cloud Data (실내 포인트 클라우드 데이터 Downsampling의 Trade-off 분석을 통한 기초 연구)

  • Kang, Nam-Woo;Oh, Sang-Min;Ryu, Min-Woo;Jung, Yong-Gil;Cho, Hun-hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.40-41
    • /
    • 2020
  • As the capacity of the 3d scanner developed, the reverse engineering using the 3d scanner is emphasized in the construction industry to obtain the 3d geometric representation of buildings. However, big size of the indoor point cloud data acquired by the 3d scanner restricts the efficient process in the reverse engineering. In order to solve this inefficiency, several pre-processing methods simplifying and denoising the raw point cloud data by the rough standard are developed, but these non-standard methods can cause the inaccurate recognition and removal the key-points. This paper analyzes the correlation between the accuracy of wall recognition and the density of the data, thus proposes the proper method for the raw point cloud data. The result of this study could improve the efficiency of the data processing phase in the reverse engineering for indoor point cloud data.

  • PDF

A study on the 2D floor plan derivation of the indoor Point Cloud based on pixelation (포인트 클라우드 데이터의 픽셀화 기반 건축물 실내의 2D도면 도출에 관한 연구)

  • Jung, Yong-Il;Oh, Sang-Min;Ryu, Min-Woo;Kang, Nam-Woo;Cho, Hun-hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.105-106
    • /
    • 2020
  • Recently, a method of deriving an efficient 2D floor plan has been attracting attention for remodeling of old buildings with inaccurate 2D floor plans, and thus, studies on reverse engineering of indoor Point Cloud Date(PCD) have been actively conducted. However, in the case of a indoor PCD, due to interference of indoor objects, available equipment is limited to Mobile Laser Scanner(MLS), which causes a efficiency reduction of data processing. Therefore, this study proposes an automatic derivation algorithm for 2D floor plan of indoor PCD based on pixelation. First, the scanned indoor PCD is projected on the XY coordinate plane. Second, a point distribution of each pixel in the projected PCD is derived using a pixelation. Lastly, 2 floor plan derivation based on the algorithm is performed.

  • PDF

Development of Standardization Algorithm for Indoor Point Cloud Data Based on the Geometric Feature of Structural Components (구조 부재의 형상적 특성 기반의 실내 포인트 클라우드 데이터의 표준화 알고리즘 개발)

  • Oh, Sangmin;Cha, Minsu;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.345-346
    • /
    • 2023
  • As the shape and size of detectable objects diversifying recognition and segmentation algorithms have been developed to acquire accurate shape information. Although a high density of data captured by the repetition of scanning improves the accuracy of algorithms the high dense data decreases the efficiency due to its large size. This paper proposes standardization algorithms using the feature of structural members on indoor point cloud data to improve the process. First of all we determine the reduction rate of the density based on the features of the target objects then the data reduction algorithm compresses the data based on the reduction rate. Second the data arrangement algorithm rotates the data until the normal vector of data is aligned along the coordinate axis to allow the following algorithms to operate properly. Final the data arrangement algorithm separates the rotated data into their leaning axis. This allows reverse engineering of indoor point clouds to obtain the efficiency and accuracy of refinement processes.

  • PDF

MPEG-DASH based 3D Point Cloud Content Configuration Method (MPEG-DASH 기반 3차원 포인트 클라우드 콘텐츠 구성 방안)

  • Kim, Doohwan;Im, Jiheon;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.660-669
    • /
    • 2019
  • Recently, with the development of three-dimensional scanning devices and multi-dimensional array cameras, research is continuously conducted on techniques for handling three-dimensional data in application fields such as AR (Augmented Reality) / VR (Virtual Reality) and autonomous traveling. In particular, in the AR / VR field, content that expresses 3D video as point data has appeared, but this requires a larger amount of data than conventional 2D images. Therefore, in order to serve 3D point cloud content to users, various technological developments such as highly efficient encoding / decoding and storage, transfer, etc. are required. In this paper, V-PCC bit stream created using V-PCC encoder proposed in MPEG-I (MPEG-Immersive) V-PCC (Video based Point Cloud Compression) group, It is defined by the MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard, and provides to be composed of segments. Also, in order to provide the user with the information of the 3D coordinate system, the depth information parameter of the signaling message is additionally defined. Then, we design a verification platform to verify the technology proposed in this paper, and confirm it in terms of the algorithm of the proposed technology.

Estimation of fabric properties using Cusick Drape simulation (Cusick Drape 시뮬레이션을 이용한 옷감의 물성 예측)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.80-81
    • /
    • 2022
  • In this paper, the physical properties of actual fabric data are predicted using the Cusick drape system, which is a means of measuring the physical properties of fabrics. Using a three-dimensional volumetric system, the cloth data of the actual Cusick drape system is acquired in a three-dimensional point cloud format. Cusick drape simulation is performed using mesh data of the same shape and size as the fabric, and the physical parameters of the draped fabric most similar to the actual draped fabric are acquired.

  • PDF

Explanable Artificial Intelligence Study based on Blockchain Using Point Cloud (포인트 클라우드를 이용한 블록체인 기반 설명 가능한 인공지능 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.36-41
    • /
    • 2021
  • Although the technology for prediction or analysis using artificial intelligence is constantly developing, a black-box problem does not interpret the decision-making process. Therefore, the decision process of the AI model can not be interpreted from the user's point of view, which leads to unreliable results. We investigated the problems of artificial intelligence and explainable artificial intelligence using Blockchain to solve them. Data from the decision-making process of artificial intelligence models, which can be explained with Blockchain, are stored in Blockchain with time stamps, among other things. Blockchain provides anti-counterfeiting of the stored data, and due to the nature of Blockchain, it allows free access to data such as decision processes stored in blocks. The difficulty of creating explainable artificial intelligence models is a large part of the complexity of existing models. Therefore, using the point cloud to increase the efficiency of 3D data processing and the processing procedures will shorten the decision-making process to facilitate an explainable artificial intelligence model. To solve the oracle problem, which may lead to data falsification or corruption when storing data in the Blockchain, a blockchain artificial intelligence problem was solved by proposing a blockchain-based explainable artificial intelligence model that passes through an intermediary in the storage process.

A Comparison of 3D Reconstruction through the Passive and Pseudo-Active Acquisition of Images (수동 및 반자동 영상획득을 통한 3차원 공간복원의 비교)

  • Jeona, MiJeong;Kim, DuBeom;Chai, YoungHo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • In this paper, two reconstructed point cloud sets with the information of 3D features are analyzed. For a certain 3D reconstruction of the interior of a building, the first image set is taken from the sequential passive camera movement along the regular grid path and the second set is from the application of the laser scanning process. Matched key points over all images are obtained by the SIFT(Scale Invariant Feature Transformation) algorithm and are used for the registration of the point cloud data. The obtained results are point cloud number, average density of point cloud and the generating time for point cloud. Experimental results show the necessity of images from the additional sensors as well as the images from the camera for the more accurate 3D reconstruction of the interior of a building.