• Title/Summary/Keyword: 포인트클라우드 데이터

Search Result 151, Processing Time 0.028 seconds

Construction of Tree Management Information Using Point Cloud Data (포인트클라우드 데이터를 이용한 수목관리정보 구축 방안)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.427-432
    • /
    • 2020
  • In order to establish an effective forest management plan, it is necessary to investigate tree management information such as tree height and DBH(Diameter at breast height). However, research on convergence and application of data acquisition technology to improve the efficiency of existing forest survey methods is insufficient. Therefore, in this study, tree management information was constructed and analyzed using point cloud data acquired through a 3D scanner. Data on the study site was acquired using fixed and mobile 3D scanners, and the efficiency of the mobile 3D scanner was presented through comparison of working hours. In addition, tree management information for object management was constructed by classifying vegetation by object using point cloud data, and by constructing information on chest height diameter and height. As a result of the accuracy evaluation compared with the conventional measurement method, the difference in tree height was 0.02-0.09m and DBH was 0.01-0.04m. If information on the location of vegetation and crowns of each object is constructed through additional research in the future, the efficiency of the work related to forest management information construction can be greatly increased.

Applicability Review of Street Dimensional Data Survey Using Point Clouds Generated from Drone Photogrammetry (드론 항공사진측량 기반 포인트 클라우드 데이터를 활용한 가로환경 조사 가능성 연구)

  • Oh, Sunghoon;Kim, Myung Jo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.401-408
    • /
    • 2021
  • With the proposal of amendments to the Pedestrian Safety Act in 2021, when the amendment bill is passed in the near future, a general dimensional investigation of the sidewalks' physical condition, which is the basis of pedestrian safety, is expected to be legislated and made mandatory. Therefore, this study presented a affordable methodology for street environment survey using entry-level drones and examined the feasibility of conducting a complete survey of pedestrian paths by local governments nationwide. To this end, various street facilities in the experimental site were measured to compare and analyze the accuracy of the point cloud data. As a result of the analysis, it was found that the measurement error range satisfies the public surveying guidelines. If the methodology presented in this study is applied, it is expected that individual local governments will be able to make a significant contribution to monitoring the physical conditions of streets to improve the pedestrian environment in the near future.

Progress Measurement of Structural Frame Construction using Point Cloud Data (포인트 클라우드 데이터를 활용한 골조공사 진도측정 연구)

  • Kim, Ju-Yong;Kim, Sanghee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.

MPEG G-PCC 국제표준 기술

  • Byeon, Ju-Hyeong;Choe, Han-Sol;Sim, Dong-Gyu
    • Broadcasting and Media Magazine
    • /
    • v.26 no.2
    • /
    • pp.31-45
    • /
    • 2021
  • 본 고는 ISO/IEC JTC 1/SC 29/WG 7 MPEG(Moving Picture Experts Group) 3DG(3D Graphics coding) 그룹에서 진행되고 있는 포인트 클라우드 데이터 압축 표준 기술 중 하나인 G-PCC(Geometry-based Point Cloud Compression) 표준에 대하여 설명하고자 한다. G-PCC는 포인트 클라우드의 기하 정보와 속성 정보를 3차원 공간에서 서로 다른 기술을 이용하여 압축하는 표준으로, 무손실 압축 방법의 경우 10:1의 압축율을 제공하고 손실 압축의 경우 35:1 정도의 압축율을 보인다. 본 고에서는 G-PCC의 기하 정보와 속성 정보의 압축 방법을 상세히 설명하고 같은 기능을 수행하는 압축 기술 간의 성능을 비교하고자 한다.

Effective Multi-Modal Feature Fusion for 3D Semantic Segmentation with Multi-View Images (멀티-뷰 영상들을 활용하는 3차원 의미적 분할을 위한 효과적인 멀티-모달 특징 융합)

  • Hye-Lim Bae;Incheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.505-518
    • /
    • 2023
  • 3D point cloud semantic segmentation is a computer vision task that involves dividing the point cloud into different objects and regions by predicting the class label of each point. Existing 3D semantic segmentation models have some limitations in performing sufficient fusion of multi-modal features while ensuring both characteristics of 2D visual features extracted from RGB images and 3D geometric features extracted from point cloud. Therefore, in this paper, we propose MMCA-Net, a novel 3D semantic segmentation model using 2D-3D multi-modal features. The proposed model effectively fuses two heterogeneous 2D visual features and 3D geometric features by using an intermediate fusion strategy and a multi-modal cross attention-based fusion operation. Also, the proposed model extracts context-rich 3D geometric features from input point cloud consisting of irregularly distributed points by adopting PTv2 as 3D geometric encoder. In this paper, we conducted both quantitative and qualitative experiments with the benchmark dataset, ScanNetv2 in order to analyze the performance of the proposed model. In terms of the metric mIoU, the proposed model showed a 9.2% performance improvement over the PTv2 model using only 3D geometric features, and a 12.12% performance improvement over the MVPNet model using 2D-3D multi-modal features. As a result, we proved the effectiveness and usefulness of the proposed model.

An Indoor Space Representation Method Using 3D Environmental Data (3차원 데이터를 이용한 실내 공간 표현 기법)

  • Lee, Se-Ho;Jeong, Seong-Gyun;Chung, Tae-Young;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.417-418
    • /
    • 2012
  • 본 논문에서는 3차원 데이터를 이용한 효율적인 실내 공간 표현 기법을 제안한다. 제안하는 기법은 3차원 데이터의 획득과 실내 구조 및 영상 정보를 표현하기 위한 표현 복원으로 구성된다. 3차원 데이터는 레이저 거리 측정기(laser range finder, LRF)와 전방향(omni) 카메라를 통해 획득한 포인트 클라우드 공간 정보와 전방향 텍스쳐 영상으로 구성된다. 실내 구조를 복원하기 위해, 획득한 포인트 클라우드를 복셀 격자 기반의 샘플링 기법을 통해 균일화하고 포아송 표면 재구성(Poisson surface rocoostruction) 기법을 통해 3차원 메쉬를 생성한다. 그리고 전방향 텍스쳐 영상과 3차원 메쉬외 기하학적 관계를 이용한 텍스쳐 매핑 기법을 통해 최종적으로 3차원 메쉬 표면을 복원한다. 실험 결과를 통해 제안하는 기법이 실내 공간을 효과적으로 표현함을 확인한다.

  • PDF

Matching for Cylinder Shape in Point Cloud Using Random Sample Consensus (Random Sample Consensus를 이용한 포인트 클라우드 실린더 형태 매칭)

  • Jin, YoungHoon
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.562-568
    • /
    • 2016
  • Point cloud data can be expressed in a specific coordinate system of a data set with a large number of points, to represent any form that generally has different characteristics in the three-dimensional coordinate space. This paper is aimed at finding a cylindrical pipe in the point cloud of the three-dimensional coordinate system using RANSAC, which is faster than the conventional Hough Transform method. In this study, the proposed cylindrical pipe is estimated by combining the results of parameters based on two mathematical models. The two kinds of mathematical models include a sphere and line, searching the sphere center point and radius in the cylinder, and detecting the cylinder with straightening of center. This method can match cylindrical pipe with relative accuracy; furthermore, the process is rapid except for normal estimation and segmentation. Quick cylinders matching could benefit from laser scanning and reverse engineering construction sectors that require pipe real-time estimates.

3D Image Scan Data-based Sweeping Shape Reconstruction Algorithm (3D 이미지 스캔 데이터 기반 SWEEPING 형상 역설계 알고리즘)

  • Kang, Tae-Wook
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.896-897
    • /
    • 2015
  • 본 연구는 3D 이미지 스캔 데이터 기반으로, SWEEPING 형상을 효과적으로 역설계하는 기술에 관한 것이다. 사용자가 미리 정의한 형상 단면 모델 데이터베이스를 이용해, 3차원 SWEEPING 형상을 자동으로 역설계하는 알고리즘을 제안한다. 이를 위해, 3D 이미지 스캔 데이터인 포인트 클라우드에서 자동으로 추출한 단면 포인트들을 처리해, 파라메터 정보를 추출하고, 미리 정의된 형상 단면들과 상호간 유사도를 비교한 후, 가장 유사한 형상 단면을 획득한다. 이러한 기술은 SWEEPING 형상 모델의 역설계 과정을 자동화하는 데 도움을 줄 것이다.

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

Rendering Quality Improvement Method based on Depth and Inverse Warping (깊이정보와 역변환 기반의 포인트 클라우드 렌더링 품질 향상 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-724
    • /
    • 2021
  • The point cloud content is immersive content recorded by acquiring points and colors corresponding to the real environment and objects having three-dimensional location information. When a point cloud content consisting of three-dimensional points having position and color information is enlarged and rendered, the gap between the points widens and an empty hole occurs. In this paper, we propose a method for improving the quality of point cloud contents through inverse transformation-based interpolation using depth information for holes by finding holes that occur due to the gap between points when expanding the point cloud. The points on the back are rendered between the holes created by the gap between the points, acting as a hindrance to applying the interpolation method. To solve this, remove the points corresponding to the back side of the point cloud. Next, a depth map at the point in time when an empty hole is generated is extracted. Finally, inverse transform is performed to extract pixels from the original data. As a result of rendering content by the proposed method, the rendering quality improved by 1.2 dB in terms of average PSNR compared to the conventional method of increasing the size to fill the blank area.