Journal of the Korean Data and Information Science Society
/
제23권6호
/
pp.1117-1125
/
2012
식중독 발생에 대한 기존 연구에서는 기온과 습도와 같은 기후변수가 주된 설명변수로 취급되어 왔다. 이 논문에서는 주별 식중독 발생건수와 기후변수 간에 관계를 고찰하고 식중독 발생건수를 예측하기 위한 모형으로 포아송 회귀모형과 자기회귀이동평균모형을 비교한다. 비교결과 우리나라 식중독 발생은 시차를 두고 기후 변수에 영향을 많이 받고 있으나 식중독 발생 예측은 이들 변수보다 이전 시점의 식중독 발생 건수에 더 많이 영향을 받는 것으로 나타났으며 포아송 회귀모형은 예측의 관점에서 문제가 있음을 보였다.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1337-1347
/
2016
본 연구는 생명보험사의 핵심 영업채널의 역할을 하고 있는 보험설계사들에 대한 설문을 바탕으로 보험설계사들의 이직횟수에 영향을 주는 요인을 찾고자 한다. 반응변수 이직횟수는 계수자료 (count data)이기에 일반화선형모형의 하나인 포아송회귀모형을 통해 분석된다. 현 조직에서의 보험설계사 근무경력은 보험설계사의 이직횟수에 직접적인 영향을 주는 변수로 본 연구모형에서는 통제변수로 설정되었다. 포아송회귀모형 적합결과, 보험설계사 이직의 횟수에 가장 큰 영향을 주는 요인은 현재 속한 회사 (대리점)으로 나타났으며, 다음으로 연령, 보험설계사로 입사하게 된 동기, 월평균 소득, 월평균 신계약건수, 최종학력 순으로 나타났다. 보험설계사가 현재의 속한 조직이 대형생보사이면 이직의 횟수가 가장 낮고, GA (general agent, 독립대리점) 소속이면 이직의 횟수가 높아지는 경향을 보이고 있다. 연령은 적을수록 이직의 횟수는 증가하고 연령이 많을수록 이직의 횟수는 작아짐을 보여주었다. 보험설계사로 입사하게 된 동기는 친구, 친척, 가족 등 지인의 추천과 동료FP, 소장, 지점장 등의 권유이면 이직의 횟수는 작게 나타났고 단순한 경제적 수입의 니즈와 능력과 적성이 부합의 자발적인 경우는 오히려 이직의 횟수는 높게 나타났다.
셀 수 있는 이산 자료 중에서 일반적인 모형에 비하여 영의 빈도가 과도하게 많이 관측되는 자료가 있다. 이러한 경우에 포아송 또는 음이항회귀모형과 같은 일반적인 회귀모형에 의한 분석은 적절하지 못하다. 본 논문에서는 영과잉 포아송회귀모형과 영과잉 음이항회귀모형에 대하여 베이지안 분석을 하였다. 또한, 마코브 연쇄 몬테카롤로 방법으로 계산한 베이즈 요인을 이용하여 모형선택을 하였다. 실제 교통사고 자료를 분석하여 이론적인 결과들을 뒷받침하였다.
김인영 등 (2006)은 두 개 포아송 분포의 혼합모형에 기초한 회귀모형으로써 2002년 (사)볼런티어 21에서 실시한 설문조사 자료를 분석하여 우리나라 개인들이 기부한 횟수에 영향을 미치는 유의적 변수들을 식별하였다. 본고에서는 김인영 등 (2006)에서도 언급하였듯이 기부횟수 0의 관찰 빈도와 예측 빈도간 차이가 유독 큰 점을 감안하여, 0이 팽창된 포아송(zero inflated Poisson: ZIP)을 기존의 두 개의 포아송 혼합분포에 추가하여 일종의 세 개 포아송 혼합분포 형태로 모집단 분포를 구성하며 동 모형의 회귀모형으로써 기부횟수 자료를 재분석하고자 한다. 회귀계수에 대한 추정은 두 단계 EM 알고리즘으로 이루어 졌고, 유의적 설명 변수의 검색은 김인영 등 (2006)과 같았으나 본 연구에서는 고정된 령(零)군의 비율을 0.201로 추정할 수 있었으며, 두 가지 유의적 설명변수인 소득과 자원봉사 중에서 자원봉사가 기부 횟수를 늘리는 안정적 도구 변수로써 작용할 수 있음을 보고하고 있다.
Communications for Statistical Applications and Methods
/
제2권1호
/
pp.22-31
/
1995
본 논문에서는 포아송 반응을 갖는 로그 선형 회귀 모형에 붙스트랩 방법을 이용하여, 여러가지 통계적 추론을 위한 유용한 확률적 결과들을 연구.소개하고, 모의실험을 통한 소표본 성질들을 다양하게 제시하고자 한다. 특히 로그 선형 회귀 모형에 대한 최우 추정량 $\hat{\beta_n}$ 및 정보행렬 I(${\beta}_0$)의 추정량들 $I_1(\hat{\beta_n}{\cdot}X)$와 $I_2(\hat{\beta_n}{\cdot}X)$에 대한 일치성 및 정규성등의 확률적 성질들, 그리고 붙스트랩 방법을 적용한 대표본 성질들과 관련하여 여러가지 모의실험 결과들을 분석.연구하였다.
Journal of the Korean Data and Information Science Society
/
제14권1호
/
pp.45-53
/
2003
The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.
이 연구에서는 식중독 발생건수를 원인물질별로 나눈 자료와 합한 자료를 별개로 분석하여 예측값을 유도한 후 계층구조를 만족하도록 하는 계층 시계열 예측에 대해 알아본다. 원인물질별 식중독 방생건수는 영과잉 포아송 회귀모형과 음이항 회귀모형으로 분석하고 합한 식중독 발생건수 포아송 회귀모형과 음이항 회귀모형으로 분석한다. 계층 시계열 예측을 위해 최적결합 중 하나인 Wickramasuriya 등 (2019)의 MinT 추정이 사용되었다. 계층조정 과정에서 발생한 음의 예측값은 0으로 수정하고 나머지 최하위 변수에 가중치를 곱해 계층구조를 만족시킨다. 실증분석 결과를 보면 원인물질별 예측에서는 계층조정을 한 결과와 하지 않은 결과에 차이가 거의 없었으나 주요, 기타 및 전체에 대한 예측에서는 계층조정 한 결과가 대체로 우수한 것으로 나타났다. 중요한 것은 계층조정을 하지 않으면 최하위 변수의 예측빈도가 주요나 기타의 예측빈도 보다 큰 경우도 발생하지만 제안된 방법을 적용하면 계층구조를 이루는 예측값을 얻을 수 있다.
최근에 해운산업의 수요와 공급이 지속적으로 일치하지 않으면서 불균형 현상이 이어지고 있다. 이에 따라 해운선사들은 선박의 공급량을 조절하기 위해 블랭크 세일링을 실시하며 수요와 공급의 균형을 맞추고 있다. 블랭크 세일링은 화물 운송을 지연시키는 부정적인 연쇄효과를 발생시키기 때문에 본 연구에서는 포아송 회귀분석을 이용하여
셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.
Journal of the Korean Data and Information Science Society
/
제28권5호
/
pp.1087-1097
/
2017
본 연구는 계수자료 (count data)를 반응변수로 갖는 포아송회귀 모형, 음이항회귀 모형, 영과잉 포아송회귀 모형, 영과잉 음이항회귀 모형의 4 모형의 비교를 통해 보험 설계사들의 이직횟수 적합을 위한 최적모형을 찾고자 한다. 보험설계사 이직횟수의 분산이 평균보다 큰 과대산포가 존재하고 0인 경우의 비중이 높을 경우에 영과잉 음이항회귀 모형을 적합하는 것이 타당함을 보여주고 보험 설계사들의 이직횟수에 영향을 주는 요인을 규명하고자 한다. 로그우도값, AIC, SBC 등을 고려하여 보험설계사 이직횟수 적합을 최적의 모형은 영과잉 이항모형과 음이항회귀모형의 결합인 영과잉 음이항 모형이 선택되었다. 영과잉 이항모형에 포함된 변수로는 성별, 총 보험설계사 근무연월, 교차모집 설계사 등록, 보유고객 수, 소속회사 유형이었고, 음이항회귀 모형에 포함된 변수로는 직무만족, 조직몰입, 채널경영만족, 총 보험설계사 근무연월, 현 직장에서 근무연월, 소속회사 유형이었다. 영과잉 음이항회귀 모형의 적합결과, 이직횟수에 유의한 영향을 주는 요인으로는 현 직장에서 근무연월, 총 보험설계사 근무연월, 소속회사 유형, 채널경영만족, 직무만족 순으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.