• Title/Summary/Keyword: 포아송모형

Search Result 228, Processing Time 0.02 seconds

Failure Time Prediction Capability Comparative Analysis of Software NHPP Reliability Model (소프트웨어 NHPP 신뢰성모형에 대한 고장시간 예측능력 비교분석 연구)

  • Kim, Hee-Cheul;Kim, Kyung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.143-149
    • /
    • 2015
  • This study aims to analyze the predict capability of some of the popular software NHPP reliability models(Goel-Okumo model, delayed S-shaped reliability model and Rayleigh distribution model). The predict capability analysis will be on two key factors, one pertaining to the degree of fitment on available failure data and the other for its prediction capability. Estimation of parameters for each model was used maximum likelihood estimation using first 80% of the failure data. Comparison of predict capability of models selected by validating against the last 20% of the available failure data. Through this study, findings can be used as priori information for the administrator to analyze the failure of software.

Bivariate reliability models with multiple dynamic competing risks (다중 동적 Competing Risks 모형을 갖는 이변량 신뢰성 모형에 관한 연구)

  • Kim, Juyoung;Cha, Ji Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.711-724
    • /
    • 2016
  • Under variable complex operating environment, various factors can affect the lifetimes of systems. In this research, we study bivariate reliability models having multiple dynamic competing risks. As competing risks, in addition to the natural failure, we consider the increased stress caused by the failure of one component, external shocks, and the level of stress of the working environment at the same time. Considering two reliability models which take into account all of these competing risks, we derive bivariate life distributions. Furthermore, we compare these two models and also compare the distributions of maximum and minimum statistics in the two models.

Analysis of Total Crime Count Data Based on Spatial Association Structure (공간적 연관구조를 고려한 총범죄 자료 분석)

  • Choi, Jung-Soon;Park, Man-Sik;Won, Yu-Bok;Kim, Hag-Yeol;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.335-344
    • /
    • 2010
  • Reliability of the estimation is usually damaged in the situation where a linear regression model without spatial dependencies is employed to the spatial data analysis. In this study, we considered the conditional autoregressive model in order to construct spatial association structures and estimate the parameters via the Bayesian approaches. Finally, we compared the performances of the models with spatial effects and the ones without spatial effects. We analyzed the yearly total crime count data measured from each of 25 districts in Seoul, South Korea in 2007.

A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model (Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발)

  • Kim, Jang Gyeong;Kwon, Hyun Han;Kim, Dong Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.821-831
    • /
    • 2014
  • Stochastic rainfall generators or stochastic simulation have been widely employed to generate synthetic rainfall sequences which can be used in hydrologic models as inputs. The calibration of Poisson cluster stochastic rainfall generator (e.g. Modified Bartlett-Lewis Rectangular Pulse, MBLRP) is seriously affected by local minima that is usually estimated from the local optimization algorithm. In this regard, global optimization techniques such as particle swarm optimization and shuffled complex evolution algorithm have been proposed to better estimate the parameters. Although the global search algorithm is designed to avoid the local minima, reliable parameter estimation of MBLRP model is not always feasible especially in a limited parameter space. In addition, uncertainty associated with parameters in the MBLRP rainfall generator has not been properly addressed yet. In this sense, this study aims to develop and test a Bayesian model based parameter estimation method for the MBLRP rainfall generator that allow us to derive the posterior distribution of the model parameters. It was found that the HBM based MBLRP model showed better performance in terms of reproducing rainfall statistic and underlying distribution of hourly rainfall series.

Development of Evaluation Model for Black Spot Improvement Priorities by using Emperical Bayes Method (EB기법을 이용한 사고잦은 곳 개선사업 우선순위 판정기법 개발)

  • Jeong, Seong-Bong;Hwang, Bo-Hui;Seong, Nak-Mun;Lee, Seon-Ha
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.81-90
    • /
    • 2009
  • The safety management of a road network comprises four basic inter-related components:identification of sites(black spot) requiring safety investigation, diagnosis of safety problems, selection of feasible treatments for potential treatment candidates, and prioritization of treatments given limited budgets(Persaud, 2001). Identification process of selecting black spot is very important for efficient investigation of sites. In this study, the accident prediction model for EB method was developed by using accident data and geometric conditions of black spots selected from four-leg signalized intersections in In-cheon City for three years (2004-2006). In addition, by comparing the rank nomination technique using EB method to that by using accident counts, we managed to show the problems which the existing method have and the necessity for developing rational prediction model. As a result, in terms of total number of accidents, both the counts predicted by existing non-linear regression model and that by EB method have high good of fitness, but EB method, considering both the accident counts by sites and total number of accident, has better good of fitness than non-linear poison model. According to the result of the comparison of ranks nominated for treatment between two methods, the rank for treatment of almost sites does not change but SeoHae intersection and a few other intersections have significant changes in their rank. This shows that, with the technique proposed in the study, the RTM problem caused by using real accident counts can be overcome.

Identifying the Effects of Drivers' Behavior on Habitual Drunk Driving with Truncated Count Data Model (절단된 가산자료모형을 이용한 상습 음주운전자들의 습관적 음주운전 행태분석)

  • Yang, Si-Hun;Kim, Do-Gyeong
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.7-17
    • /
    • 2011
  • Traffic problems caused by drunk drivers have been steadily raised from the past. Even though the previous researches have focused on the development of countermeasures for preventing drunk driving, the number of drivers violating the DUI (Driving-Under-Influence) regulation is still increasing. Many studies seek countermeasures for preventing drunk driving by comparing the differences between general and drunk drivers. However, few researches have investigated focusing only on the characteristics of drunk drivers. It is well known that characteristics of general drivers are different from those of drunk drivers, and also habitual drunk drivers have different characteristics from non-habitual drunk drivers. Motivated by this fact, only the drivers who have violated DUI regulation are considered in the analysis. This study primarily aims to provide alternative solutions for reducing habitual drunk drivers who are highly inclined to do drunk driving repeatedly. For the analysis, various types of variables potentially effecting drunk driving behavior were investigated, and then truncated count data models were developed to analyze the effects of the variables selected on drunk driving. The results showed that 1) a truncated negative binomial model is better fitted to the data; and 2) five variables including experiential learning, the lack of self-control, self-reflection, the fear of crackdown, and the level of dependence on vehicles were found to be statistically significant.

A study of epidemic model using SEIR model (SEIR 모형을 이용한 전염병 모형 예측 연구)

  • Do, Mijin;Kim, Jongtae;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.297-307
    • /
    • 2017
  • The epidemic model is used to model the spread of disease and to control the disease. In this research, we utilize SEIR model which is one of applications the SIR model that incorporates Exposed step to the model. The SEIR model assumes that a people in the susceptible contacted infected moves to the exposed period. After staying in the period, the infectee tends to sequentially proceed to the status of infected, recovered, and removed. This type of infection can be used for research in cases where there is a latency period after infectious disease. In this research, we collected respiratory infectious disease data for the Middle East Respiratory Syndrome Coronavirus (MERSCoV). Assuming that the spread of disease follows a stochastic process rather than a deterministic one, we utilized the Poisson process for the variation of infection and applied epidemic model to the stochastic chemical reaction model. Using observed pandemic data, we estimated three parameters in the SIER model; exposed rate, transmission rate, and recovery rate. After estimating the model, we applied the fitted model to the explanation of spread disease. Additionally, we include a process for generating the Exposed trajectory during the model estimation process due to the lack of the information of exact trajectory of Exposed.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.345-353
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do parameter inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision to market software, the conditional failure rate is an important variables. In this case, finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of polynomial hazard function.

A Study on the Reliability Attributes of the Software Reliability Model Following the Shape Parameter of Minimax Life Distribution (미니맥스 수명분포의 형상모수를 따르는 소프트웨어 신뢰모형에 관한 신뢰속성에 관한 연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.325-330
    • /
    • 2018
  • This paper, following the shape parameters of the minimax distribution, describes the special form of the beta distribution, the Minimax distribution, as a function of the shape parameters for the software reliability model based on the non-homogeneous Poisson process. Characteristics and usefulness were discussed. As a result, the case of the shape parameter 1 of Minimax distribution than less than and greate in mean squared error is the smallest, in determination coefficient, appears to be high, the shape parameter 1 of Minimax distribution regard as an efficient model. The estimated determination coefficient of the proposed model is estimated to be more than 95%, which is a useful model in the field of software reliability. Through this study, software design and users can identify the software failure characteristics using mean square error, decision coefficient, and confidence interval can be used as a basic guideline.

Accident Models of Circular Intersection by Cause Using ZAM (ZAM을 이용한 원형교차로 원인별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • This study deals with the traffic accidents of circular intersections in Korea. The goal of this study is to develop the traffic accident models using ZAM. The main results are as follows. First, in the case of 'violating the operational method of intersection', ZINB(zero-inflatednegative binomial) models were analyzed to be the best fit to the data. Second, in the case of' no maintaining the safe distance', ZINB models were also analyzed to be the best fit to the data. Finally, such the common variables as traffic volume and width of circular roadway were selected as the independent variables. The more traffic volume and the less width of circulatory roadway were evaluated to make the more accidents. Such the specific variables as the number of approach lanes and speed reduction facilities were selected as the explanatory variables. The more approach lanes and the less speed reduction facilities were evaluated to give the more accidents. This study might be expected to give some implications to the accident research on the circular intersections.