• Title/Summary/Keyword: 포신마모

Search Result 5, Processing Time 0.019 seconds

An Study on the Erosion Characteristics of Tube CN98 (CN98 포신의 마모특성 연구)

  • Kim, Jae-Kab
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.42-52
    • /
    • 2006
  • Tube erosion can be defined as a phenomenon for an increment of bore diameter, a declination of accuracy and utility of tube by firing. This study introduces the characteristics of tube life for the 155 mm K9 SHP Using a tube history book with bore measurement data and firing data of standard charge, this study analyzed the EFC vs Tube life and EFC with heat transfer effect formula as a consideration of continuous firing vs tube life. The results were compared with Firing Table(FT 155-K9-1) after the analysis. Also, this study suggests that CN98 tube can be rifled as 1000 EFC through the severe condition with continuous firing.

Derivation of Fitting Approximate Formula to Enhance the Accuracy of Cannon Tube Erosion Rate (포신 마모 예측의 정확도 향상을 위한 적합 근사식 유도(I))

  • Chung, Dong-Yoon;Oh, Myoung-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.80-87
    • /
    • 2002
  • We predict the unknown cannon tube erosion rate by using observed values of the standard cannon, 155mm Howitzer Ml85. We know the standard cannon's ten erosion observation values each 400 rounds. An approximate formula fitting the erosion values of the standard cannon has been derived. Numerical simulation applying this formula to the Rauf Imam's erosion equations is presented.

  • PDF

Derivation of Empirical Method to Enhance the Accuracy of Cannon Tube Erosion Rate (포신 마모 예측의 정확도 향상을 위한 실험적 방법 유도)

  • 정동윤;오명호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.23-32
    • /
    • 2002
  • We predict the erosion rate of unknown cannon tubes by substituting measured values of the standard cannon, 155㎜ Howitzer M185 and ballistic data for the erosion equation. We know ten measured erosion values of the standard cannon at every 400 rounds. An approximate formula is derived to interpolate six values up to 2,000 rounds. Numerical example is presented and its results are analyzed. The new erosion equation is also suggested. This equation produces more accurate cannon tube erosion rate than the Rauf Imam's empirical approaches. Computer simulations are presented.

MEMS Capacitive Gap Sensor for Measuring Abrasion Depth of Gun Barrel Rifling (포신 강선의 마모 깊이 측정을 위한 정전용량 방식의 MEMS 간극센서)

  • Lee, Seok-Chan;Lee, Seung-Seob;Lee, Chang-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.976-981
    • /
    • 2009
  • MEMS capacitive gap sensor is developed for measuring abrasion depth of gun barrel rifling. Measuring abrasion depth of gun barrel rifling is very important because it is related with exactness of firing and life of arms. The method using a gap sensor is not to hurt rifling. And it can measure abrasion depth through minimum shooting, because the developed gap sensor can measure from $1{\mu}m{\sim}12{\mu}m$ using Polydimethylsiloxane(PDMS) material and making a stretchable electrode on PDMS. And it's resolution is 1 ${\mu}m$ using capacitive method and MEMS technology.

The Development and Application Wear of Prediction Tool for Gun Barrel (포열 마모예측용 소프트웨어 개발 및 적용)

  • Kim Gun-In;Chung Dong-Yun;Park Song-Gu;Lee Gyu-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.5-12
    • /
    • 2004
  • The erosion wear of gun barrel occurs due to heat and chemical reactions. The high pressure and temperature in chamber increase the erosion wear. It is known that the metal phase transfer is the primary wear factor in a gun barrel under high temperature. In this paper, the tool of wear prediction in high pressure gun tube has been developed. The program developed has three modules such as DIRECT(interior ballistics analysis module), INVERSE(gun design module), and WEAR(wear prediction module). The prediction of wear was compared with the experimental data which was collected in the field unit. The prediction results shows good trend with the collected data.