• Title/Summary/Keyword: 포논 전달

Search Result 8, Processing Time 0.022 seconds

A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model (전자-포논 상호작용 모델을 이용한 실리콘 박막 소자의 포논 평균자유행로 스펙트럼 열전도 기여도 수치적 연구)

  • Kang, Hyung-sun;Koh, Young Ha;Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.409-414
    • /
    • 2017
  • The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution (실험적 포논 평균자유행로 스펙트럼 분포를 이용한 포논 스펙트럼 포논-표면 산란율 모델)

  • Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.621-627
    • /
    • 2016
  • In this study, we present a model that can be used to calculate the phonon-surface scattering rate directly from the experimental data on phonon mean free path (MFP) spectra of nanostructures. Using this model and the recently reported length-dependent thermal conductivity measurements on $Si_{0.9}Ge_{0.1}$ nanowires (NWs), we investigate the spectral reduced MFP distribution and the spectral phonon-surface scattering rate in the $Si_{0.9}Ge_{0.1}$ NWs. From the results, it is found that the phonon transport properties with the material and the phonon frequency dependency of the spectral phonon-surface scattering rate per unit length of the NW. The model presented in this study can be used for developing heat transfer analysis models of nanomaterials, and for determining the optimum design for tailoring the heat transfer characteristics of nanomaterials for future applications of phonon nanoengineering.

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation (Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

A Study on Thermal Conductivity Measurement and Optical Characteristics of Thin Films (박막의 열물성 측정 및 광학특성 연구)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2202-2207
    • /
    • 2007
  • The present article investigates experimentally and theoretically thermal and optical characteristics of thin film structures through measurement of thermal conductivity of Pyrex 7740 and reflectance in silicon thin film. The $3{\omega}$ method is used to measure thermal conductivity of very thin film with high accuracy and the optical characteristics in thin films are studied to examine the influence of incidence angle of light on reflectance by using the CTM(Characteristics Transmission Method) and the 633 nm He-Ne laser reflectance measurement system. It is found that the estimated reflectance of silicon show good agreement with experimental data. In particular, the present study solves the EPRT(Equation of Phonon Radiative Transport) which is based on Boltzmann transport equation for predicting thermal conductivity of nanoscale film structures. From the results, the measured thermal conductivity is in good agreement with the previous published data. Moreover, thermal conductivities are estimated for different film thickness. It indicates that as film thickness decreases, thermal conductivity decreases substantially due to internal scattering.

Transient heat transfer in thin films (초박막에서의 비정상 열전달)

  • Bai, C.H.;Chung, M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • For the analysis of phonon heat transfer within short time and spatial scales, conventional macroscopic heat conduction equations with jump boundary conditions are tried and the results are compared to those of equation of phonon radiative transport(EPRT), which is one of microscopic transport equation. In transient state the macroscopic temperatures show far different behavior from EPRT. In steady state the hyperbolic temperatures with temperature jump at the wall from time relaxation model agrees well with EPRT temperatures. Since EPRT is also an approximate form of microscopic transport equation and there are no experimental results to verify the proposed model in this study, we can not conclude whether the approaching method from this study is valid or not. To the authors' knowledge, there are no experimental results available which can be used to test the validity of these models. Such an experiment, while difficult to conduct, would be invaluable.

Effect of Filler Size on the Thermal Diffusivity of Nylon 66/SiC Composites (필러 크기가 Nylon 66/SiC 복합재료의 열확산도에 미치는 영향)

  • Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.169-173
    • /
    • 2014
  • The effect of filler sizes on the thermal diffusivity of Nylon 66/SiC composites was investigated. By loading 60 vol% of SiC fillers on Nylon 66, the thermal diffusivity of the composites increased more than 10 times than that of unfilled Nylon 66 and the thermal diffusivity of composites with filler sizes of $24{\mu}m$ and $76{\mu}m$ increased to $2.2{\times}10^{-2}cm^2/sec$ and $1.75{\times}10^{-2}cm^2/sec$, respectively. It is speculated that the smaller filler size ($24{\mu}m$) of SiC is more favorable for the formation of thermal conductive path that the larger size ($76{\mu}m$) of filler composites. The thermal diffusivity of Nylon 46/SiC 400 (60 vol%) composites was $1.61{\times}10^{-2}cm^2/sec$ that was lower than that of Nylon 66/SiC (60 vol%) composites.

Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction (금속기판에 유전체 후막을 형성시켜 제조한 2층 층상재료에서 두께 방향의 열전도 특성)

  • Kim, Jong-Gu;Jeong, Ju-Young;Ju, Jae-Hoon;Park, Sang-Hee;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.87-92
    • /
    • 2016
  • The importance of heat dissipation for the electric device modules along the thickness direction is increasing. Two types of two-layered materials, metal-metal bonding and dielectric-metal bonding, have been fabricated by roll bonding process and a thermal diffusivity of the specimens was measured along the thickness direction. The thermal diffusivity of specimens with metal-metal bonding measured by light flash analysis (LFA) showed a same value independent on the direction of heat flow. However, the thermal diffusivity of specimens with dielectric-metal bonding showed a big difference of 17.5% when the direction of heat flow changed oppositely in the LFA process. The measured thermal diffusivity of specimens when the heat flows from metal to dielectric direction showed smaller value of 17.5% compared to the value when the heat flow from dielectric to metal direction. The difference in thermal diffusivity of specimens with dielectric-metal bonding dependence on direction of heat flow is due to the electron-phonon resistance that occurred transfer process of electron energy to phonon energy near the interface.