• Title/Summary/Keyword: 폐타이어 고무 재활용 기술

Search Result 5, Processing Time 0.018 seconds

Chemical Devulcanization for the Recycling of Rubber Powder of Waste Tires and Mechanical Properties (폐타이어 고무분말 재활용을 위한 화학적 탈황과 기계적 물성 평가)

  • An, Ju-Young;Park, Jong-Moon;Bang, Daesuk;Kim, Bong-seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.59-65
    • /
    • 2015
  • Recycling of vulcanized rubber products is a serious problem in the world. A quantity of generated waste tires becomes much more and more because of increasing demands on automobiles, resulted in the cause of serious secondary pollution by sulfur component that is crosslinked to incineration or landfill. In addition, crosslinked surfur is used to interfere with the binding of the raw material rubber. In this study, we analyzed the degree of devulcanization by the chemical devulcanization. Devulcanization ratio of the samples were systematically analysed by variables such as time and temperature. In addition, the effect of swelling method as a pre-treatment process was also measured. A rubber specimen was deepened in a organic 2-buthanol solutions during various times of 1 ~ 5 hrs at 100, 150, $200^{\circ}C$ respectively, then to calculate the crosslink density and the number average molecular weight by using a parallel expansion process, which showed devulcanization degree of analyzed samples quantitatively. Also, the mechanical properties were measured with the samples prepared by using a hot press.

Life Cycle Assessment(LCA) of Rubber Recycling Process in Waste Tire (폐타이어 고무 재활용 공정의 전과정평가 연구)

  • Ahn, Joong Woo;Kim, Jin Kuk
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.74-83
    • /
    • 2018
  • This study conducted the Life Cycle Assessment(LCA) on waste rubber recycling technology for recovering rubber product from the waste tires. Environmental impacts were assessed for the five categories of impacts: global warming, resource depletion, acidification, eutrophication, photochemical oxide production, and ozone layer depletion. When recycling 1ton of waste tire containing rubber, global warming impact was 1.77E+02 kg $CO_2-eq.$, resource depletion impact was 1.23E+00 kg Sb-eq., acidification impact was 5.92E-01 kg $SO_2-eq.$, eutrophication impact was 1.23E-01 kg $PO{_4}^{3-}-eq.$, photochemical oxide production impact was 3.42E-01 kg $C_2H_4-eq.$, and ozone layer depletion impact was 1.87E-04 kg CFC11-eq. In terms of overall environmental impacts, carbon, softener and electricity the greatest impact, so it is necessary to compare the environmental impacts of the raw materials to replace carbon and softener, and a method to reduce the filler usage in the process is needed. In addition, it is necessary to improve energy efficiency, change to low-energy sources, and apply renewable energy.

Current Effective Recycling and Application Methods in Construction Waterproofing Industries (건설방수산업분야에서의 유효자원 재활용 및 응용 기술 현황)

  • Park, Jin-Sang;Kim, Sun-Do;Park, Wan-Goo;Kim, Dong-Bum;Lee, Jong-Yong;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • This paper intends to analyze the roles of regulations and certifications within the construction market that affect the effective recycling and application methods of construction waterproofing industries. Certifications, eco-labels, green certification patents, and new excellent technologies obtained in construction waterproofing industries are studied. In accordance to the study results, it was determined that, a total of 38 items obtained eco-labels with effective recycling as the theme, 10 items with green certifications, and 8 items with New Excellent Technologies. Regarding the types of effective recycled resources, most of them were concerned with composite-polymer(EVA, PVC, etc.) materials, waste tire powder, waste rubber, etc., which indicated that there is a clear limitation in the variety of the materials that are eligible for effective recycling in the construction waterproofing industries.

Development of CLSM for Underground Structure Using Recycling Materials (재활용재료를 이용한 지하매설물용 유동성뒤채움재 개발)

  • Lee, Kwan-Ho;Kim, Sung-Kyum;Ham, Sang-Min;Kim, Young-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1097-1100
    • /
    • 2010
  • 지하매설물의 안전성은 뒤채움재의 시공과정 및 재료의 품질관리에 큰 영향을 받는다. 최근 지하매설물의 파손형태을 검토한 결과, 파손의 주요 원인으로 부적절한 뒤채움재 이용 및 충분하지 못한 다짐 등이 있다. 이러한 원인으로 매설물 주위의 지반침하로 인한 파손이 빈빈하게 발생하고 있다. 본 연구에서는 현장에서 발생하는 현장발생토사, 정수장처리장의 정수슬러지, 화력발전소의 플라이애쉬, 폐타이어 고무분말 등을 혼합한 유동성 뒤채움재의 최적배합설계 및 설계에 필요한 기본적인 강도특성을 규명하였다.

  • PDF