• Title/Summary/Keyword: 폐전자스크랩

Search Result 12, Processing Time 0.022 seconds

Bioleaching of valuable metals from electronic scrap using fungi(Aspergillus niger) as a microorganism (곰팡이균(Aspergillus niger)을 이용(利用)한 전자스크랩중 유가금속(有價金屬)의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.24-31
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Fe, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in the presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Fe, Co and Ni from electronic scrap, chemical leaching using organic acid(Citric acid and Oxalic acid) was accomplished. At the electronic scrap concentration of 50 g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pb and Sn were leached about 15-35%. Ni and Fe were detected in the leachate less than 10%.

Biological Leaching of Cu, Al, Zn, Ni, Co, Sn and Pb from Waste Electronic Scrap using Thiobacillus Ferrooxidans (廢電子스크랩에서 Thiobacillus ferrooxidans를 이용한 Cu, Al, Zn, Ni, Co, Sn 및 Pb의 浸出)

  • Ahn, Jae-Woo;Kim, Myeong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin;Ahn, Jong-Gwan
    • Resources Recycling
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • In order to recover valuable metals from the waste electronic scrap, bioleaching of Cu, Zn, Al, Co, Ni, Sn and Pb was carried out using Thiobacillus ferrooxidans as a leaching microorganism in a shaking flask. In a preliminary study, to obtain the data on the leaching of Cu, Zn, Al, Co and Ni, the metal leaching was accomplished using metal powers instead of electronic scrap. The leaching percentaga of Cu, Zn, Co, Al and Ni powers was reduced with the increase of metal power concentration in solution. Below the metal concentration of 0.5 g/L, more than 85% of Cu, Co and Zn powers was leached out. At the electronic scrap concentration of 100 g/L, Thiobacillus ferrooxidans were able to leach more than 90% of the available Cu and Co while Al, Zn and Ni were able to leach less than 40%. Pb and Sn were not detected in the leachate. Pb was precipitated as PbSO$_4$, whereas Sn precipitated probably as SnO.

Current Status on the Pyrometallurgical Process for Recovering Precious and Valuable Metals from Waste Electrical and Electronic Equipment(WEEE) Scrap (폐전기전자기기(廢電氣電子機器) 스크랩으로부터 귀금속(貴金屬) 및 유가금속(有價金屬) 회수(回收)를 위한 건식공정(乾式工程) 기술(技術) 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Jeong, Jin-Ki
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.14-23
    • /
    • 2009
  • In terms of resources recycling and resolving waste disposal problems, it is very important to recover precious metals like Au, Ag and Pd and valuable metals like Cu, Sn and Ni from the scraps of waste electrical and electronic equipment(WEEE) that consists of detective electrical and electronic parts discarded during manufacturing electrical and electronic equipments and waste electrical and electronic parts generated during disassembling them. In general, the scraps of WEEE are composed of various metals and alloys as well as refractory oxides and plastic components. Precious and valuable metals from the scraps of WEEE can be recovered by gas-phase-volatilization, hydrometallurgical, or pyrometallurgical processes. However, the gas-phase-volatilization and hydrometallurgical processes have been suggested but not yet commercialized. At the present time, most of the commercial plants for recovering precious and valuable metals from the scraps of WEEE adopt pyrometallurgical processes. Therefore, in this paper, the technical and environmental aspects on the important pyrometallurgical processes through literature survey are reviewed, and the scale-up result of a new pyrometallurgical process for recovering the precious and valuable metals contained in the scraps of WEEE using waste copper slag is presented.

Analysis of Commercial Recycling Technology and Research Trend of Printed Circuit Boards in Korea (국내 인쇄회로기판의 재활용 상용화 기술 및 연구동향 분석)

  • An, HyeLan;Kang, Leeseung;Lee, Chan-Gi
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • Recently, the amount of electronic scrap is rapidly increasing due to the rapid growth of the electronics industry. Among the components of electronic scrap, the printed circuit board(PCB) is an important recycling target which includes common metals, precious metals, and rare metals such as gold, silver, copper, tin, nickel and so on. In Korea, however, PCB recycling technologies are mainly commercialized by some major companies, and other process quantities are not accurately counted. According to present situation, several urban mining companies, research institutes, and universities are conducting research on recovery of valuable metals from PCBs and/or reusing them as raw materials that is different from existing commercialization process developed by major companies. In this study, we analyzed not only current status of collection/disposal process and recycling of waste PCBs in Korea but also the trend of recycling technologies in order to help resource circulation from waste PCBs become more active.

Oversea Production Status of Gold, Silver, Platinum and Palladium from Scrap (스크랩으로부터 금, 은, 백금, 팔라듐 해외생산현황)

  • Kim, Bum-Choong;Chae, Sujin;Kim, Jinsoo;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.76-83
    • /
    • 2018
  • This article aims to summarize the scrap recycling status of gold, silver, platinum and palladium from foreign countries by courntires and industries in order to utilize the data for securing the raw materials of the domestic urbanmining industry. The amount of gold from scrap has shown a tendency to decrease in countries other than China, which is attributed to the large imports of scrap containing gold in China. The industry demand for gold is the highest in electronic products, but demand is decreasing. The amount of scrap recycling in silver has declined in other regions compared to those in Europe, indicating that the world's overall scrap recycling volume has declined. Production and demand from scrap of platinum and palladium are mostly for catalysts and have been steadily increasing until now. However, it is expected that the amount of waste catalysts in automobiles will decrease with the increase of electric vehicle use.

A study of recovery and recycling from Tin wasted resources (주석 함유 폐 자원으로부터 주석 회수 및 재활용 방안 연구)

  • Jeong, Hang-Cheol;Jin, Yeon-Ho;Kim, Geon-Hong;Jang, Dae-Hwan;Gong, Man-Sik
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.217-218
    • /
    • 2015
  • 주석은 최근 첨단 전기, 전자 제품의 핵심 소재로써 지속적인 수요 증가가 예상되는 전략 금속이다. 국내의 수요량은 2011년 기준 약 17,000톤 으로 99% 이상 수입에 의존하고 있는 실정이다. 그러나, 국내의 주석 제련 산업은 전무한 상태이며 폐자원에서 재활용하는 회수 기술도 초보 단계이다. 이러한 폐자원 발생량은 12,000톤/year이며, 약 1200억원에 달하는 규모이다. 다양한 폐자원의 선별적 전처리 요소 기술 개발 및 회수 공정 시스템 개발이 절실히 요구된다. 본 연구에서는, 주석 폐자원 중 solder 용융물 및 공정 스크랩 Lead solder, Lead-free solder 등 뿐만 아니라, ITO target 제조 시 발생하는 ITO sludge 등의 고상 폐자원으로부터 페자원의 물성을 파악하여 금속/산화물과의 파/분쇄 및 분급공정을 통하여 고품위의 주석 금속을 회수하였다. 뿐만 아니라, 고순도 주석시 발생하는 양극 슬라임 침출액 등의 액상 폐자원으로부터 희소금속의 추출 및 회수를 위해 습식 전처리 공정을 수행하였다. 침출액은 주석, 구리, 납 등의 유가금속이 이온형태로 존재하고 있으며, Chlorine이 다량 함유되어 있다. 고품위의 주석 산화물을 회수하기 위하여 침출액 내의 구리 제거 공정, Chlorine 제거 공정 등을 순차적으로 수행하여 고품위의 산화물 회수를 수행하였다.

  • PDF

Cementation of Tin by Aluminium from Hydrochloric acid Solution (염산산성(鹽酸酸性) 용액(溶液)중에서 알루미늄에 의한 주석(朱錫)의 치환반응(置換反應))

  • Ahn, Jae-Woo;So, Sun-Seob
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • A study on the cementation for the recovery of tin with aluminium in the hydrochloric acid solution was carried out. Parameters, such as aluminium metal equivalent, pH, reaction time, reaction temperature and the concentration of chloride ions were investigated. The experimental results showed that the cementation rate of Sn(II) ions increased with increase of the addition amount of aluminium powders, temperature, pH and the concentration of chloride ions in hydrochloric acid solution. From the results, the optinum conditions for recovery of metallic tin by cementation with aluminium metal powders were proposed.

Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet (Fe-Si 전기강판 폐스크랩을 이용한 연자성 분말 및 테이프 제조기술)

  • Hong, Won Sik;Kim, Sang Hyun;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • This study focused on examining the possibility for recycling of Fe-Si electric sheet. We manufactured Fe-6.5Si mother alloy using by Fe-Si electric sheet scrap for transformer core materials. And then, soft magnetic alloy powder which diameter and shape were $45{\sim}150{\mu}m$ and sphere type was prepared by gas atomization process. As we compared to commercial Fe-6.5Si powder, its diameter distribution and microstructure of recycled powder was a similar. To investigate the possibility of reusing the soft magnetic composite sheet for electronics, recycled powder was treated to have a high aspect ratio (AR), and we finally obtained the 65~66 AR and $2.3{\mu}m$ thickness powder. To release the residual stress of powder, heat treatment was conducted under $300{\sim}400^{\circ}C$, $N_2$ gas. And then, soft magnetic sheet was made by tape casting process using by those powders. After the density and permeability of tape was measured, and we confirmed that the recycled Fe-Si electric sheet scrap was possible to reuse the soft magnetic materials of electronics.

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.