• Title/Summary/Keyword: 폐음 분류

Search Result 5, Processing Time 0.017 seconds

Performance comparison of lung sound classification using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 폐음 분류 방식의 성능 비교)

  • Kim, Gee Yeun;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • In the diagnosis of pulmonary diseases, auscultation technique is simpler than the other methods, and lung sounds can be used for predicting the types of pulmonary diseases as well as identifying patients with pulmonary diseases. Therefore, in this paper, we identify patients with pulmonary diseases and classify lung sounds according to their sound characteristics using various convolutional neural networks, and compare the classification performance of each neural network method. First, lung sounds over affected areas of the chest with pulmonary diseases are collected by using a single-channel lung sound recording device, and spectral features are extracted from the collected sounds in time domain and applied to each neural network. As classification methods, we use general, parallel, and residual convolutional neural network, and compare lung sound classification performance of each neural network through experiments.

Design of Lung Sound Analyzer Using Adaptive Digital Filter and DSP Chip (적응 디지탈 필터와 DSP 칩을 이용한 폐음 분석기 설계)

  • 김규한;조일준
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.151-156
    • /
    • 1989
  • Lung sound analyer which can provide an objective diagnosis of patients with pulmonary and bronchial disorders is designed. For the purpose of power spectrum analysis, adaptive digital filtering technique and TM - S320C25 DSP chip is used. As a results, adaptive lattice Wiener filter could eliminate heart sounds with a few of 10th order and on the distribution of power spectrum each patterns has shown in normal vescicular breathy from 100 Hz to 200 Hz, in crackle sound from 100 Hz to 400 Hz, in wheeze sound from 150 Hz to 600 Hz.

  • PDF

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

A New Pattern Classification and the Analysis of the Lung Sound by Using Cepstrum (Cepstrum을 이용한 폐음의 분석 및 패턴 분류)

  • 김종원;김성환
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.159-166
    • /
    • 1994
  • A new pattern classification algorithm using cepstrum to analyze lung sounds for the classification of pattern with pulmonary and bronchial disorders is proposed. To evaluate the perfomance of the proposed method, the results are compared to the pattern classification with the AR modeling method. In the experiment lung sounds recorded for the training of physician used. As a results, the accuracy of the cepstrum classification is 92.3 % and AR modeling is the 53.8 %, therefore cepstrum modeling method has very high performance than AR and it turned out to be a very efficient algorithm.

  • PDF

A Study on Robust Pattern Classification of Lung Sounds for Diagnosis of Pulmonary Dysfunction in Noise Environment (폐질환 진단을 위한 잡음환경에 강건한 폐음 패턴 분류법에 관한 연구)

  • Yeo, Song-Phil;Jeon, Chang-Ik;Yoo, Se-Keun;Kim, Duk-Young;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper, a robust pattern classification of breath sounds for the diagnosis of pulmonary dysfunction in noise environment is proposed. The feature parameter extraction method by highpass lifter algorithm and PM(projection measure) algorithm are used. 17 different groups of breath sounds are experimentally classified and investigated. The classification has been performed by 6 different types of combinations with proposed methods to evaluate the performances, such as ARC with EDM and LCC with EDM, WLCC with EDM, ARC with PM, LCC with PM, WLCC with PM. Furthermore, all feature parameters are extracted to 80th orders by 5th orders step, and all experiments are evaluated in increasing noise environments by degrees SNR 24dB to 0dB. As a results, WLCC which is derived from highpass lifter algorithm, is selected for the feature parameter extraction method. Pm is more robust than EDM in noisy environments to test and compare experimental results. WLCC with PM method(WLCC/PM) has a better performance in an increasing noise environment for diagnosis of pulmonary dysfunction.