• Title/Summary/Keyword: 폐수처리 반응기

Search Result 168, Processing Time 0.025 seconds

RTD Analysis using Radioisotope Tracer on the Water Flow Characteristics in a Flocculator of Wastewater Treatment Facility (방사성동위원소 추적자를 이용한 폐수처리시설의 응집조에서 유입수의 체류시간분포 분석)

  • Kim, Jin-Seop;Jung, Sung-Hee;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Using In-113m emitting gamma ray of 0.392MeV at radioisotope tracer the RTD (residence time distribution) of water in the flocculator of wastewater treatment facility was measured. The result was analyzed mathematically using K-RTD program constructed on the basis of CFSTR (constant flow stirred tank reactor) model. The mean residence time and the tank number are the main parameters which describe the flow behavior of the system. Those parameters were obtained in the fitting profess of the simulated curves to the experimental results. It was suggested to construct a modified numerical model to describe the bypass flow which was observed in the experiment.

Control of Aeration Phase in SBR for Piggery Wastewater Treatment using FLC (퍼지제어기를 이용한 축산폐수처리를 위한 연속회분식 반응기(SBR)의 폭기제어)

  • Jeon, Byung-Hee;Bae, Hyun;Seo, Hyun-Yong;Woo, Hye-Jin;Kim, Chang-Won;Kim, Sung-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.275-278
    • /
    • 2003
  • 본 연구에서는 축산폐수공공처리장내에 설치된 Pilot-scale SBR(유효부피,20㎥)를 이용하여 sub-cycle의 폭기/무산소구간을 최적화하기 위하여 DO를 입력으로 하여 넓은 운전조건에서 적용될 수 있는 퍼지제어기를 개발하고, 또한 부하이상을 신속히 진단하여 유입부하량을 제어할 수 있는 퍼지 시스템 제어기를 개발하였다. DO값을 입력으로 한 퍼지제어기로서 안정성과 연속성에서 우수하였으나 시스템에 따라서 소속함수의 범위를 재조정해야 할 필요가 있다. DO미분값은 변화폭이 큰 지점을 검출함으로써 지연시간(lag time)의 DO값에 관계없이 적용할 수 있는 장점이 있다. 제어기의 적용성과 안정성을 높이기 위해서는 두 가지 제어인자를 동시에 고려할 필요가 있으며 퍼지 소속함수에 대한 입력으로서 DO값과 DO미분값을 적용하였다. 그 결과 폭기구간에서 매우 안정적이고 신속하게 폭기제어지점의 검출을 보여주고 있어 최적화된 제어가 가능함을 보여준다. 현장실험결과 지연시간에서의 DO가 높고 외란이 심한 경우에도 적용될 수 있음을 보여주었다.

  • PDF

Growth Response and Absorption Capacity of Poplars on Livestock Waste Water (축산폐수(畜産廢水) 처리(處理)에 따른 포플러류(類)의 생육반응(生育反應) 및 축산폐수(畜産廢水) 흡수능력(吸收能力))

  • Yeo, Jin Kie;Koo, Yeong Bon;Son, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.734-741
    • /
    • 2001
  • The two-month-old rooted-cuttings of Populus alba ${\times}$ glandulosa, P. euramericana and P. nigra ${\times}$ maximowiczii clones were exposed to livestock waste water - one of major water pollutants, and ground water in order to determine the effects of livestock waste water on growth response and absorption capacity of the species. For this purpose, 5 clones of each species were used. In all the species, the height growth of rooted-cuttings was better in livestock waste water treatment than in ground water. Of all the poplar species compared, the height growth was best in P. alba ${\times}$ glandulosa. In the cases of P. euramericana and P. nigra ${\times}$ maximowiczii, the height growth in the livestock waste water treatment was statistically different among clones, whereas there was no significant difference among P. alba ${\times}$ glandulosa clones. Aboveground biomass such as leaf and shoot dry weight of all the species increased in the livestock waste water treatment, while root dry weight decreased. In addition, chlorophyll contents in leaf of all the poplar species increased in the livestock waste water treatment. All the poplar trees showed temporal variation in the absorption amount of livestock waste water during the experimental period. In all the poplar species, the absorption amount of livestock waste water was less than that of ground water. Of 3 poplar species, P. alba ${\times}$ glandulosa was best in the absorption capacity of livestock waste water. Of all 15 poplar clones compared in this study, the 72-16 clone of P. alba ${\times}$ glandulosa showed the best absorption capacity.

  • PDF

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Removal Characteristics of COD and Nitrogen by Aerated Submerged Bio-film(ASBF) Reactor (ASBF 생물반응기를 이용한 COD 및 질소 제거특성)

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.997-1002
    • /
    • 2007
  • The objectives of this research are to remove dissolved organic matter and nitrogen compounds by using aerated submerged bio-film(ASBF) reactors in batch systems and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophic and autotrophic bacteria in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. These structures are designed to encourage the growth of a nitrifying bacterial bio-film on a submerged surface. Specially, the effects of cold temperatures on the dissolved organic matter and ammonia nitrogen performance of the ASBF pilot plant was investigated for the batch system. It is anticipated thai the ASBF would be used for a design of biological treatment for removing of dissolved organic matter and nitrogen compounds in new wastewater treatment plants as well as existing wastewater treatment plants.

Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma (수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거)

  • Jo, Jin Oh;Lee, Sang Baek;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.544-550
    • /
    • 2013
  • This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

Degradation of Polyvinyl Alcohol in Dye-Processing Wastewater by Agar-Acrylamide Microbial Immobilization Method (한천-아크릴아마이드 미생물 고정화법에 의한 폐수 중 폴리비닐알콜의 분해)

  • 김재훈;김정목조무환
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • For the treatment of poorly biodegradable polyvinyl alcohol(PVA) in dye-processing wastewater, immobilized microbial beads were prepared by uslng agar-acrylamide method. PVA removal efficiency for the synthetic wastewater was 85% at the PVA volume loading rate of $3.1g/\ell$.day. In case of real desizing wastewater, PVA removal efficiency was 81.3% at the PVA volume loading rate of $3.25g/\ell$.day. In observation of cross section of immobilized bead passed 5 months with diameter of 2.4mm, the growth of cell was limited by the resistance of substrate and oxygen transfer for the inners region of more than 48% of bead radius from the surface. It was estimated that 70% of total removed PVA was degraded by the immobilized cells in the continuous immobilized reactor. Substrate utilization rate in the suspended reactor was decreased with increasing dilution rates above 0.083 hr-1, but that in the immobilized reactor was increased with increasing dilution rates up to 0.125hr-1. The substrate removal efficiency of immobilized reactor was much superior to that of suspended reactor with increasing dilution rates. Saturation constant of substrate utilization rate equation, Ks was $6.6 g PVA/\ell$, and maximum specific substrate utilization. k was 0.175g PVA/g cell.hr

  • PDF

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.

Solar Detoxification of Trichloroethylene in Waste Water with Slurry Batchtype Photoreactor (Slurry batch형 광화학 반응기를 이용한 폐수 내의 Trichlroethylene의 분해)

  • Lee, Tai-K.;Kim, Dong-H.;Cho, Sug-H.;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.10-20
    • /
    • 1992
  • In this experiment, photochemical reaction has been applied to destroy TCE in water phase. The main target of this work is to investigate the technical feasibility of large scale of solar detoxification reactor for water treatment. The results have revealed that solar detoxification utilizing photon energy from the sun is the most attractive process to decompose organic toxins in water phase at room temperature. The detailed results from this work are as follows; (1) The highest conversion ratio of TCE was obtained by using $TiO_2$, annatase as a photocatalyst among $TiO_2$ anatase, $TiO_2$ rutile and $V_2O_5$ under the same experimental condition. The anatase crystal structure was confirmed with XRD analysis, and its surface area was 7.748 $m^2/g$ from the BET-$N_2$ measurement (2) 0.1 wt% of $TiO_2$ anatase has been adopted as optimal quantity for batch slurry reactor at this experimental conditions. (3) The effect of hydrogen peroxide on the conversion of TCE was investigated. Its optimal quantity was 0.06 vol. % under this experimental conditions. (4) The effect of oxygen on the conversion of TCE also was studied by controlling the head space in photoreactor. Results indicated that sufficient amount of oxygen should be supplied to accomplish the highest conversion rate of TCE in water phase.

  • PDF