Kim, So Ri;Choe, Yeong Hun;Lee, Ka Young;Min, Kyung Hoon;Park, Seoung Ju;Lee, Heung Bum;Lee, Yong Chul;Rhee, Yang Keun
Tuberculosis and Respiratory Diseases
/
v.64
no.2
/
pp.125-132
/
2008
Background: In chronic obstructive pulmonary disease (COPD) patients, the serum levels of C-reactive protein (CRP) are elevated and an increase of CRP is more exaggerated in the acute exacerbation form of COPD (AECOPD) than in stable COPD. Pulmonary arterial hypertension is a common complication of COPD. An increased level of CRP is known to be associated with the risk of systemic cardio-vascular disorders. However, few findings are available on the potential role of CRP in pulmonary arterial hypertension due to COPD. Methods: This study was performed prospectively and the study population was composed of 72 patients that were hospitalized due to AECOPD. After receiving acute management for AECOPD, serum CRP levels were evaluated, arterial oxygen pressure ($PaO_2$), was measured, and the existence of pulmonary arterial hypertension under room air inhalation was determined in the patients. Results: The number of patients with pulmonary arterial hypertension was 47 (65.3%)., There was an increased prevalence of pulmonary arterial hypertension and an increase of serum CRP levels in patients with the higher stages of COPD (e.g., patients with stage 3 and stage 4 disease; P<0.05). The mean serum CRP levels of patients with pulmonary arterial hypertension and without pulmonary arterial hypertension were $37.6{\pm}7.4mg/L$ and $19.9{\pm}6.6mg/L$, respectively (P<0.05). However, there was no significant difference of the mean values of $PaO_2$ between patients with pulmonary arterial hypertension and without pulmonary arterial hypertension statistically ($77.8{\pm}3.6mmHg$ versus $87.2{\pm}6.0mmHg). Conclusion: We conclude that higher serum levels of CRP can be a sign for pulmonary arterial hypertension in AECOPD patients.
Kim Do-Kyun;Lee Chang Young;Lee Kyo Joon;Joo Hyun Chul;Yoo Kyung-Jong
Journal of Chest Surgery
/
v.38
no.10
s.255
/
pp.680-684
/
2005
Background: With the increasing age of the population, coronary artery bypass grafting in the elderly patients is becoming common. Off-pump coronary artery bypass grafting (OPCAB) has been proven to be less morbidity and to facilitate early recovery. The elderly patients may have benefits by avoiding the adverse effects of the cardiopulmonary bypass. The purpose of this study is to evaluate our results of OPCAB in elderly patients. Material and Method: A retrospective chart review was carried out for 12 patients aged over 80 years who underwent isolated OPCAB from January 2001 and March 2004. Data were collected risk factors for disease, extent of coronary disease, and in-hospital outcomes. Postoperative graft patiency was evaluated in 9 patients by multi-slice computed tomography. Result: Eleven patients had triple vessel disease or left main disease. Four patients were suffered from preoperative CVA, and 4 patients had chronic obstructive pulmonary disease. Two patients had myocardial infarction (MI), among them 1 patient was suffered from pulmonary edema after preoperative MI. There was no perioperative death, perioperative MI, and no ventricular arrhythmia. Also there was no perioperative stroke and renal failure. But there was one deep sternal infection who recovered by treating of muscle flap. Atrial fibrillation was newly developed in 1 patient, but was well controlled by medication. Mean intubation time was $15.9\pm4.4(8\~20hrs)$ hrs and mean ICU stay was $2.9\pm0.8(2\~4 days)$ days. Mean hospital day was $21.6\pm14.3(13\~56 days)$ days. Postoperative mean CK-MS was $11.3\pm14.1\;ng/mL$. Early postoperative graft patency rate was $100\%(24/24)$. Follow-up was completed in all patients. In this time, there was no patients with angina or death. Conclusion: The results of this study suggest that OPCAB reduces morbidity and favors hospital outcomes. Therefore, OPCAB is safe, reasonable and might be preferable operative strategy in elderly patients.
Frequently patients with chronic obstructive pulmonary disease have lowered arterial oxygen saturation in daytime. During sleep, they are apt to experience additional hypoxemia. These episode of nocturnal hypoxemia are usually associated with periods of relative hypoventilation. Noctunal hypoxemia may be associated with cardiac arrhythmia and with acute increase in pulmonary arterial pressure and may be implicated in the development of chronic pulmonary hypertension and cor pulmonale. We selected 14 patients with chronic obstructive pulmonary disease, 9 with emphysema dominant type and 5 with chronic bronchitis dominant type, to examine the frequency and severity of nocturnal hypoxemia and the effect of oxygen in prevention of nocturnal hypoxemia. The results were as follows; 1) On PFT, FVC, $FEV_1$, and $FEV_1$/FVC showed no significant difference between the emphysema dominant type (pink puffers, PP) and the chronic bronchitis dominant type (blue bloaters, BB). But DLCO/VA for the PP group was $45.7{\pm}15.1%$ which was significantly different from BB group, $82.4{\pm}5.6%$. 2) The daytime arterial oxygen saturation ($SaO_2$) and the lowest $SaO_2$, during sleep for the BB group were significantly lower than for the PP group. 3) The hypoxemic episodes during sleep were more frequent in BB group and the duration of hypoxemic episode was longer in BB group. 4) In both group studied, although there was a tendency for a lower L-$SaO_2$ (the lowest $SaO_2$, during sleep), an increase in hypoxemic episodes and duration as the daytime $SaO_2$, fell lower, the only parameter which showed significant correlation was daytime $SaO_2$, and the frequency of hypoxemic episodes in the PP group (r=-0.68, P<0.05). 5) In PP group, with oxygen supplementation, L-$SaO_2$, during sleep showed significant increase, and there was a tendency for the frequency of hypoxemic episodes and duration to fall but it was not significant. 6) In BB group, oxygen supplementation significantly increased the L-$SaO_2$ during sleep and also significantly decreased the frequency and duration of hypoxemic episode. From these results, we can see that oxygen supplementation during sleep can prevent the decrease in $SaO_2$ to some extent and that this effect of oxygen can be seen more prominently in the BB group.
Park, Sang Sun;Kim, Eun Joung;Son, Chang Young;Wi, Jeong Ook;Park, Kyung Hwa;Cho, Gye Jung;Ju, Jin Young;Kim, Kyu Sik;Kim, Yu II;Lim, Sung Chul;Kim, Young Chul;Park, Kyung Ok;Na, Kook Joo
Tuberculosis and Respiratory Diseases
/
v.55
no.1
/
pp.88-97
/
2003
Background : Although smoking is a major cause of chronic obstructive pulmonary disease (COPD), only 10-20% of cigarette smokers develop symptomatic COPD, which suggests the presence of genetic susceptibility. This genetic susceptibility to COPD might depend on variations in the activities of the enzyme that detoxify hazardous chemical products, such as microsomal epoxide hydrolase (mEPHX) and glutathione-S transferase M1 subunit (GSTM1) genes. Methods : The genotypes of 58 patients with COPD, and 79 age matched control subjects, were determined by a polymerase chain reaction, followed by restriction fragment length polymorphism (PCR-RFLP) for the mEPHX, and multiplex PCR for the GSTM1. Results : GSTM1 was deleted in 53.3% of the subjects. There was no difference in GSTM1 deletion rates between the COPD patients (32/58, 55.2%) and the control subjects (41/79, 51.9%). The combination patterns of two polymorphisms of mEPHX showed slow enzyme activity in 29(21.2%), normal in 73(53.3%) and fast in 32(23.4%). The COPD group (7/57, 12.3%) showed a significantly lower incidence of slow enzyme activity compared to the control subjects (22/77, 28.6%, p<0.05). However, when the COPD and control groups were compared with smokers only, there were no significant differences in the genotypes of GSTM1 and mEPHX. Conclusion : The genotypes of GSTM1 and mEPHX were not significant risk factors of COPD in this cohort of study.
Background: Because of the common etiologic factor, such as smoking, lung cancer and chronic obstructive pulmonary disease are often present in the same patient. The preoperative prediction of remaining pulmonary function after the resectional surgery is very important to prevent serious complication and postoperative respiratory failure. $^{99m}Tc$-MAA perfusion scan has been used for the prediction of postoperative pulmonary function, but it may be inaccurate in case of large V/Q mismatching. We compared $^{99m}Tc$-DTPA radioaerosol inhalation scan with $^{99m}Tc$-MAA perfusion scan in predicting postoperative lung function. Method: Preoperative inhalation scan and/or perfusion scan were performed and pulmonary function test were performed preoperatively and 2 month after operation. We predicted the postoperative pulmonary functions using the following equations. Postpneurnonectomy $FEV_1$=Preop $FEV_1x%$ of total function of lung to remain Postlobectomy $FEV_1$=Preop $FEV_1{\times}$(% of total 1-function of affected lung${\times}$$\frac{Number\;of\;segments\;to\;be\;resected}{Number\;of\;segments\;of\;affected\;lung})$ Results: 1) The inhalation scan showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.94, 0.91, 0.87 respectively). 2) The perfusion scan also showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.86, 0.72, 0.87 respectively). 3) Among three parameters, $FEV_1$ showed the best correlations in the prediction by lung scans. 4) Comparison between inhalation scan and perfusion scan in predicting pulmonary function did not show any significant differneces except FVC. Conclusion: The inhalation scan and perfusion scan are very useful in the prediction of postoperative lung function and don't make a difference in the prediction of pulmonary function a1though the former showed a better correlation in FVC.
Chronic obstructive pulmonary disease (COPD) is a substantially under-diagnosed disorder, and the diagnosis is usually delayed until the disease is advanced. However, the benefit of early diagnosis is not yet clear, and there are no guidelines in Korea for doing early diagnosis. This review highlights several issues regarding early diagnosis of COPD. On the basis of several lines of evidence, early diagnosis seems quite necessary and beneficial to patients. Early diagnosis can be approached by several methods, but it should be confirmed by quality-controlled spirometry. Compared with its potential benefit, the adverse effects of spirometry or pharmacotherapy appear relatively small. Although it is difficult to evaluate the benefit of early diagnosis by well-designed trials, several lines of evidence suggest that we should try to diagnose and manage patients with COPD at early stages of the disease.
Park Young-Woo;Her Keun;Lim Jae-Ung;Shin Hwa-Kyun;Won Yong-Soon
Journal of Chest Surgery
/
v.39
no.5
s.262
/
pp.354-358
/
2006
Background: Pulsatile pumps for extracorporeal circulation have been known to be better for tissue perfusion than non-pulsatile pumps but be detrimental to blood corpuscles. This study is intended to examine the risks and benefits of $T-PLS^{TM}$ through the comparison of clinical effects of $T-PLS^{TM}$ (pulsatile pump) and $Bio-pump^{TM}$ (non-pulsatile pump) used for coronary bypass surgery. Material and Method: The comparison was made on 40 patients who had coronary bypass using $T-PLS^{TM}\;and\;Bio-pump^{TM}$ (20 patients for each) from April 2003 to June 2005. All of the surgeries were operated on pump beating coronary artery bypass graft using cardiopulmonary extra-corporeal circulation. Risk factors before surgery and the condition during surgery and the results were compared. Result: There was no significant difference in age, gender ratio, and risk factors before surgery such as history of diabetes, hypertension, smoking, obstructive pulmonary disease, coronary infarction, and renal failure between the two groups. Surgery duration, hours of heart-lung machine operation, used shunt and grafted coronary branch were little different between the two groups. The two groups had a similar level of systolic arterial pressure, diastolic arterial pressure and mean arterial pressure, but pulse pressure was measured higher in the group with $T-PLS^{TM}\;(46{\pm}15\;mmHg\;in\;T-PLS^{TM}\;vs\;35{\pm}13\;mmHg\;in\;Bio-pump^{TM},\;p<0.05)$. The $T-PLS^{TM}$-operated patients tended to produce more urine volume during surgery, but the difference was not statistically significant $(9.7{\pm}3.9\;cc/min\;in\;T-PLS^{TM}\;vs\;8.9{\pm}3.6\;cc/min\;in\;Bio-pump^{TM},\;p=0.20)$. There was no significant difference in mean duration of respirator usage and 24-hour blood loss after surgery between the two groups. Plasma free Hb was measured lower in the group with $T-PLS^{TM}\;(24.5{\pm}21.7\;mg/dL\;in\;T-PLS^{TM}\;versus\;46.8{\pm}23.0mg/dL\;in\;Bio-pump^{TM},\;p<0.05)$. There was no significant difference in coronary infarction, arrhythmia, renal failure and morbidity rate of cerebrovascular disease. There was a case of death after surgery (death rate of 5%) in the group tested with $T-PLS^{TM}$, but the death rate was not statistically significant. Conclusion: Coronary bypass was operated with $T-PLS^{TM}$ (Pulsatile flow pump) using a heart-lung machine. There was no unexpected event caused by mechanical error during surgery, and the clinical process of the surgery was the same as the surgery for which $Bio-pump^{TM}$ was used. In addition, $T-PLS^{TM}$ used surgery was found to be less detrimental to blood corpuscles than the pulsatile flow has been known to be. Authors of this study could confirm the safety of $T-PLS^{TM}$.
Background: It is well known that cigarette smoking is the risk factor of lung cancer, chronic obstructive pulmonary disease and ischemic heart disease. But there are few reports about the immediate effect of cigarette smoking on the cardiopulmonary functions. The serum level of carbon monoxide increases during cigarette smoking. It is known that carbon monoxide increases respration rate, heart rate and cardiac output, with decrease in maximal oxygen consumption. So we have studied to determine the immediate effects of cigarette smoking on the cardiopulmonary function during exercise. Method: Thirteen healthy smoking male subjects were included in this study. Each subject was undertaken pulmonary function test and incremental exercise test on two separate days, one without smoking (control) and the other after smoking three cigarettes per hour for five hours. The order of the two tests was randomized. Results: 1) The mean age of the subjects was $25{\pm}4.9$ year-old and the mean smoking history was $6{\pm}5$ pack years. 2) The mean blood level of carbon monoxide on the smoking day was higher than that on the nonsmoking day ($5.97{\pm}1.34%$ vs. $1.45{\pm}0.83%$; p<0.01). 3) The mean maximal oxygen consumption on the smoking day was lower than that on the nonsmoking day ($2.09{\pm}0.32$ L/min vs. $2.39{\pm}0.32$ L/min; p<0.05). 4) The mean anaerobic threshold on the smoking day was lower than that on the nonsmoking day ($1.33{\pm}0.24$ L/min vs. $1.53{\pm}0.20$ L/min; p<0.05). 5) The mean heart rate at rest on the smoking day was higher than that on nonsmoking day ($84.38{\pm}11.06$ beats/min vs. $75.46{\pm}5.83$ beats/min; p<0.05). But the means of maximal heart rate on both days were not different. 6) The pulmonary function tests were similar on both days. Conclusion: There was no change in pulmonary function test, but the maximal oxygen consumption and anaerobic threshold were decreased on the smoking day. So it was concluded that cigarette smoking impaired the cardiovascular functions immediately during exercise.
The functional derangement of skeletal muscles which may be attributed to chronic hypoxia has been accepted as a possible mechanism of exercise impairment in patients with chronic obstructive pulmonary disease (COPD). The metabolic changes in skeletal muscle in patients with COPD are characterized by impaired oxidative phosphorylation, early activation of anaerobic glycolysis and excessive lactate and hydrogen ion production with exercise. But the cause of exercise limitation in patients with chronic lung disease without hypoxia has not been known. In order to evaluate the change in the skeletal muscle metabolism as a possible cause of the exercise limitation in chronic lung disease patients without hypoxia, we compared the muscular metabolic data of seven male patients which had been derived from noninvasive $^{31}P$ magnetic resonance spectroscopy(MRS) with those of five age-matched normal male control persons. $^{31}P$ MRS was studied during the sustained isometric contraction of the dominant forearm flexor muscles up to the exhaustion state and the recovery period. Maximal voluntary contraction(MVC) force of the muscle was measured before the isometric exercise, and the 30% of MVC force was constantly loaded to each patient during the isometric exercise. There were no differences of intracellular pH (pHi) and inorganic phosphate/phosphocreatine(Pi/PCr) at baseline, exhaustion state and recovery period between two groups. But pHi during the exercise was lower in patients group than the control group (p < 0.05). Pi/PCr during the exercise did not show significant difference between two groups. These results suggest that the exercise limitation in chronic lung disease patients without hypoxia also could be attributed to the abnormalities in the skeletal muscle metabolism.
Background : Chronic obstructive pulmonary disease(COPD) is one of the major contributors to morbidity and mortality among the adult population. Cigarette smoking(CS) is undoubtedly the single most important factor in the pathogenesis of COPD. However, its mechanism is unclear. The current hypothesis regarding the pathogenesis of COPD postulates that an imbalance between proteases and antiproteases leads to the destructive changes in the lung parenchyma. This study had two aims. First, to evaluate the effect of CS exposure on histologic changes of the lung parenchyme, and second, to evaluate the effect of CS exposure on the expression of the gelatinolytic enzymes in BAL fluid cells in guinea pigs. Methods : Two groups of five guinea pigs were exposed to the whole smoke of 20 commercial cigarettes per day, 5 hours/day, 5 days/week, for 6weeks, and 12 weeks, respectively, using a smoking apparatus. Five age-matched guinea pigs exposed to room air were used as controls. Five or more sections were microscopically extamined(${\times}400$) and the number of cellular infiltration of the alveolar wall was measured in order to evaluate the effect of CS exposure on the histologic changes of lung parenchyme. The statistical significance was analyzed by a linear regression method. To evaluate the expression of the gelatinolytic enzymes in intraalveolar cells, BAL fluid was obtained and the intraalveolar cells were separated by centrifugation (500 g for 10 min at $4^{\circ}C$). Two sets of culture plates were loaded with $1{\times}10^6$ intraalveolar cells. One plate, contained O.1mM EDTA, a inhibitor of matrix metalloproteases(MMPs), and the other plate had no EDTA. Both plates were incubated for 48 hours at $37^{\circ}C$. After incubation, gelatinolytic protease expression in the supernatants was analyzed by gelatin zymography. Results : At the end of CS exposure, the level of blood carboxy Hb had increased significantly(4.1g/dl in control group, 24g/dl immediately after CS exposure, 18g/dl 30 min after CS exposure, 15g/dl 1 hour after CS exposure). Alveolar inflammatory cells were identified in the CS exposed guinea pigs. The number of alveolar cellular cells observed in a microscopic field ($400{\times}$) was $121.4{\pm}7.2$, $158.0{\pm}20.2$, $196.8{\pm}32.8$, in the control, the 6 weeks, and the 12 weeks group, respectively. The increased extent of inflammatory cellular infiltration of the lung parenchema showed a statistically significant linear relationship with the duration of CS exposure(p=0.001, $r^2=0.675$). Several types of gelatinolytic enzymes in the intraalveolar cells of CS exposed guinea pigs were expressed, of which some were inhibited by EDT A. However, the gelatinolytic enzymes were not expressed in the control groups. Conclusion : CS exposure increases inflammatory cellular infiltration of the alveolar wall and the expression of gelatinolytic proteases in guinea pigs. EDTA inhibits some of the gelatinolytic proteases. These findings suggest a possibility that CS exposure may increase MMP expression in the lungs of guinea pigs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.