• Title/Summary/Keyword: 폐석

Search Result 235, Processing Time 0.02 seconds

Development of Amended Clay Liner for Waste Containment System (매립장의 인공점토차수재 개발에 관한 연구)

  • 신은철;김성환;오영인
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.70-73
    • /
    • 1997
  • Recycling of$\boxUl$ useful industrial waste is highly recommended by the government. Some geotechnical properties such as specific gravity, dry density, unconfined compressive strength, pH. compressibility, permeability were determined to evaluate the feasibility of waste lime use in the landfill as an admixture clay liner. Various types of environmental tests on waste lime were conducted to compare the results with the EPA requirements. Laboratory test results indicate that admixture soil(waste lime/decomposed granite soil) is a promising material its an admixture clay liner in the sanitary landfill.

  • PDF

Physiological Tolerance of Native Tree Species in Abandoned Coal Mine Spoils (탄광 폐석지내 자생 수종의 생리적 피해 및 내성)

  • 이재천;한심희;장석성;김판기;허재선;염규진
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.172-178
    • /
    • 2003
  • This study was conducted to assess the physiological tolerance of native tree species for successful restoration and revegetation of abandoned coal-mine spoils. Study sites were two coal-mine spoils (Sododong and Ssarijae) in Taebaek, Kangwon Province, Korea. Five individuals of Betula costata and of B. schmidtii were analyzed for malondialdehyde (MDA) and hydrogen peroxide ($H_2O$$_2$) content, nitrate reductase (NR) and superoxide dismutase (SOD) activity, and for carbohydrate concentration in the leaves. Trees in the abandoned coal-mine spoils were influenced by deficiencies expressed by MDA and $H_2O$$_2$ content in the leaves of two species being higher at the coal-mine spoils than in the surrounding forest. Low NR activity indirectly represented nitrogen deficiency in the soil of the coal-mine spoils; an unmanageable SOD activity implied that tolerant functions didn't net against a certain stress of the coal-mine spoils. Decreased glucose and increased starch concentration especially showed the inhibition of the carbohydrate metabolism by inadequate factors. Consequently, low nitrogen content in the real-mine soils might increase damage in trees as a result of inhibiting the expression of tolerance mechanisms against stress. Therefore, trees in coal-mine spoils need ample nitrogen to use as a metabolic energy source in order to prevent damage and increase tolerance against stress.

A Study on Characteristics of Leachability and Compressive Strength of Incinerator Fly Ash, Cement and Waste Stone Powder by Solidification (산업폐기물 소각장 비산재의 시멘트 및 폐석분 고형화시 압축강도 및 용출특성)

  • Jung, Ho-Young;Kim, Young-Ju;Kim, Ji-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.560-566
    • /
    • 2008
  • In this paper, the solidification behaviour and compressive strength of fly ash, cement, and waste stone powder were studied each separately and with addition of each in different proportions. And also, we assessed stabilizing ability of waste stone powder in cement which was added in fly ash. The particle size of waste stone powder was found smaller than the fly ash and cement particle sizes. Moreover, when mixing all(fly ash, cement, and waste stone powder) showed distinctive crystal structure, and improved stiffness. In case of mixing fly ash, cement and waste stone powder in different proportions, the compressive strength was exceeded to the predicted compressive strength of 10 kgf/cm$^2$. The XRD analysis showed high contents of CaO in fly ash and SiO$_2$ in case of waste stone powder sample. Heavy metal emission experiment showed the 3mg/L of Pb after 14 days of mixing 150 kg/m$^3$ of cement with the 80$\sim$100 kg/m$^3$ of waste stone powder, which is fulfilling the National Waste Management Policy.

Performance Evaluation of Eco-friendly Permeable Block Using Basalt Waste Rock (현무암 폐석을 이용한 친환경 투수블록의 성능평가)

  • Sang-Soo Lee;Hyeong-Soon Kwon;Jae-Hwan Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.299-306
    • /
    • 2023
  • Environmental pollution problems are occurring due to the negative treatment of basalt waste in Jeju Island. This study identifies the characteristics of permeable block with basalt with physical and chemical adsorption mechanisms and examines their applicability and functionality as building materials. This experiment is basic data for evaluating the functionality of the permeable block by analyzing flexural strength, compressive strength, permeability coefficient, carbon dioxide, and fine dust adsorption rate by producing a permeable block using a basalt waste rock. As the basalt waste stone replacement rate increased, the flexural strength and compressive strength tended to decrease, and as the replacement rate increased, the water permeability coefficient, absorption rate, carbon dioxide, and fine dust adsorption rate tended to increase. Therefore, it is judged that the permeable block using the basalt waste rock is superior to the existing permeable block.

The Acid Rock Drainage and Hydraulic Characteristics of the Waste Rock Dump (폐석적치장의 산성배수발생 및 수리특성 분석)

  • Cheong, Young Wook;Ji, Sang Woo;Yim, Gil Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.13-24
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of Acid Rock Drainage (ARD). The Acid Base Accounting(ABA) test was performed for geological materials such as pit wall, waste rock and stream sediments near the Imgi abandoned pyrophyllite mine in Busan, Korea. In addition, hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump. Maximum Potential Acidity(MPA) of geological materials near the Imgi mine was 246.942kg $H_2SO_4/t$, and maximum Acid Neutralising Capacity(ANC) was 8.7kg $H_2SO_4/t$. These results indicate the pit wall and waste rock, except most of stream sediments are acid generating geological materials. These have salt and free hydrogen ion which resulted from oxidation of sulfides. Hence they could be convert rain water to acid rock drainage. Although the waste rock dump of the Imgi mine have very low infiltration rate, slopes of the waste rock dump have many "V" type erosion gullies and multi-layers. These gullies and multi-layers have coarse clastic particle layers which have very large hydraulic conductivity. Through this coarse clastic particle layer a large part of rain flow into ground. And also this layer could function as aeration path which induced oxidation of sulfide minerals and generation of ARD continuously.

  • PDF

Geochemical Experiment for Effective Treatment of Abandoned Mine Wastes (광산폐석의 효과적 처리를 위한 지화학적 연구)

  • 이진국;이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 1998
  • The geochemical experiments were carried out to investigate a removal effect of heavy metals in abdndoned metallic mine wastes, and to conceive a treatment techniques of them. In order to prevent contamination, experiment appature was made of acrylic acid resin and polyethylene which resist to acid and alkali. Experiment models are devided into four groups based on the system environments, distribution patterns and a kind of filling materials. The first group is background model(model I ) which is filled with waste only and opened to air. The second one is four layer group which is subdivided into two models, opened and closed systems, and the third mix group which is subdivided into three models based on mixing ratio of filling materials and system environment like a layered group. The forth is composed of two layer model, lower one composed of waste and upper one limestone chips. Solution drained from Model Ishows a high contents of heavy metals on the all terms of experiments. Among the models, however, the closed mix model V and Ⅶ show the most effective removal of heavy metals liberated from wastes. Models having different mixing ratios of filling materials on closed systems does not affect in heavy metal removal effect. But, the distribution patterns of filling materials affect very much on removal effect of heavy metals. The closed models with same constitution ratios and distribution patterns of filling materials show more and less effective removal to the open models.

  • PDF

Geotechnical Engineering Characteristics and Consolidation Settlement Estimation of Waste Lime Landfill (폐석회 매립지반의 지반공학적 특성 및 압밀침하량산정)

  • Shin, Eun-Chul;Lee, Ae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to examine the consolidation characteristics of waste landfill from sodium carbonate production. The waste lime is a byproduct from the production of soda ash. The consolidation settlement of waste lime landfill was determined for waste lime specimen which obtained from the field boring. The consolidation tests are conducted for determination of the primary and secondary consolidation settlements. The waste lime is classified as an organic soil with high plasticity. As a result of an organic content test, the contents of organic matter in waste lime is much higher than that of normal clay. Finally, the total consolidation settlement of waste lime landfill is calculated by using a theoretical method and computer program for the given initial void ratio, compression index, and embankment height.

Soil Physical and Chemical Properties of Kaolinite Opencast Mines and Adjacent Red Pine Forests in Sancheong-gun (산청군 고령토(백토) 노천 광산 채굴지와 인접 소나무 임분의 토양 물리·화학적 성질)

  • Kim, Kyung Tae;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.382-389
    • /
    • 2020
  • Soil properties in opencast mines are a key factor in reclamation (revegetation) of mining areas. In this study we determined the soil physical and chemical properties of kaolinite tailings, reclaimed areas, and adjacent natural red pine (Pinus densiflora S. et Z.) forests in kaolinite opencast mines in Sancheong-gun, Gyeongsangnam-do. Six sites were chosen for collection of soil samples to determine soil physical and chemical properties at a soil depth of 10 cm. Soil bulk density was significantly higher (P < 0.05) in the kaolinite tailings (1.51 g·cm-3) than in the reclaimed areas (1.19 g·cm-3) and red pine forests (0.93 g·cm-3), whereas air phase in the kaolinite tailings (14.2%) was significantly lower than in the red pine forests (32.6%). Clay content in the red pine forests was significantly higher than in the reclaimed areas (18.7%) or kaolinite tailings (14.8%), whereas soil structural stability index was significantly lower in the reclaimed areas (1.61%) and kaolinite tailings (0.87%) than in the red pine forests (7.75%). Soil pH was significantly higher in the kaolinite tailings (pH 6.68) and reclaimed areas (pH 6.27) than in the red pine forests (pH 5.31). Soil organic carbon and total nitrogen were significantly higher in the red pine forests (C: 36.03 mg·g-1; N: 2.08 mg·g-1) than in the reclaimed areas (C: 5.00 mg·g-1; N: 0.31 mg·g-1) than in the kaolinite tailings (C: 2.12 mg·g-1; N: 0.07 mg g-1). The amount of available phosphorus was not significantly different among the three treatments. The concentration of exchangeable potassium was significantly lower in the kaolinite tailings (0.08 cmolc·kg-1) than in the reclaimed areas (0.21 cmolc·kg-1) and red pine forests (0.30 cmolc·kg-1). These results indicate that, because of high soil bulk density and low soil organic carbon, total nitrogen, available phosphorus, and exchangeable potassium in kaolinite tailings and reclaimed mining areas, soil nutrient management is needed in order to reclaim the vegetation in these type of areas.