• Title/Summary/Keyword: 폐석적치장

Search Result 28, Processing Time 0.024 seconds

Deformation Characteristics of a Slope at a Coal Waste Depot through Analysis of Monitoring Results (계측결과 분석을 통한 석탄폐석 적치장 사면의 변형 특성)

  • Cho, Yong-Chan;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Deformation of a slope at a coal waste depot and the natural slope under the depot was surveyed and investigated at Dogye village in Samcheock city, Gangwon Province. To investigate the behaviors of the slopes, wire sensors and a rain gauge were installed on the crest of the waste depot slope and inclinometers were installed in the natural slope. The results of deformation monitoring at the crest of the waste depot slope using wire sensors revealed increased deformation with increasing cumulative rainfall. The results of monitoring horizontal deformation of the natural slope revealed that maximum horizontal deformation was also affected by cumulative precipitation. However, the groundwater level at the natural slope showed no change with rainfall. These measurements confirm that deformation at coal mine waste depots is closely related to precipitation, indicating that self-loading at such depots increases with rainfall infiltration, thus causing deformation of the waste depot slope. In addition, increasing the self-load of the coal mine waste depot may cause deformation of the underlying natural slope.

임기광산 주변 수질특성 변화연구

  • 임길재;정영욱;지상우;홍성규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.385-389
    • /
    • 2004
  • 임기납석광산 폐석적치장 상부의 계곡수로부터 폐석적치장 하부인 수영강 합수지점까지 수계를 따라 물시료 12개 지점을 대상으로 수질 및 안정동위원소 분석을 수행하였다. 폐석적치장으로부터 pH가 2.83이고 Fe, Al, Mn 등으로 심하게 오염된 산성배수가 유출되어 계곡수를 오염시키며 수계의 수질은 $Ca^{2+}$-SO$_{4}$$^{2-}$ 형태로 변화되고 폐석적치장 주변 수로에 적화현상을 유발하고 있다. 또한 안정동위원소 분석결과 임기납석광산 인근 수계에 가장 큰 오염부하를 유발하는 요소인 침출수(산성배수)의 기원은 강수기원으로 판단된다. 이는 폐석침출수 오염원 평가 및 처리에 유용한 자료로 이용 될 수 있을 것이다.

  • PDF

The Acid Rock Drainage and Hydraulic Characteristics of the Waste Rock Dump (폐석적치장의 산성배수발생 및 수리특성 분석)

  • Cheong, Young Wook;Ji, Sang Woo;Yim, Gil Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.13-24
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of Acid Rock Drainage (ARD). The Acid Base Accounting(ABA) test was performed for geological materials such as pit wall, waste rock and stream sediments near the Imgi abandoned pyrophyllite mine in Busan, Korea. In addition, hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump. Maximum Potential Acidity(MPA) of geological materials near the Imgi mine was 246.942kg $H_2SO_4/t$, and maximum Acid Neutralising Capacity(ANC) was 8.7kg $H_2SO_4/t$. These results indicate the pit wall and waste rock, except most of stream sediments are acid generating geological materials. These have salt and free hydrogen ion which resulted from oxidation of sulfides. Hence they could be convert rain water to acid rock drainage. Although the waste rock dump of the Imgi mine have very low infiltration rate, slopes of the waste rock dump have many "V" type erosion gullies and multi-layers. These gullies and multi-layers have coarse clastic particle layers which have very large hydraulic conductivity. Through this coarse clastic particle layer a large part of rain flow into ground. And also this layer could function as aeration path which induced oxidation of sulfide minerals and generation of ARD continuously.

  • PDF

Contamination of Heavy Metals from Dongmyeong Au-Ag Mine Area (동명 금-은 광산 주변의 중금속 오염)

  • 이광춘;김세현;이승호;서용찬
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Researches were carried out to investigate the characteristics and concentration of heavy metal elements of stream water through Dongmyoung abandoned metal mine and soil adjacent to the mine. The pH range of water was 5.9∼7.1 that implies the water environment was acidic to neutral. The contents and distribution aspects of heavy metals in water samples varied with geochemical characteristics of element, but the concentration of heavy metals has the tendency of increase closer to the mine in general. The results of soil analysis show that total heavy metal concentration of agricultural soil near mine was far lower than those of ore tailing and dumping site. Therefore, the effects of the abandoned mine on stream water and agricultural products were supposed to be insignificant, particularly because the portion of absorbed carbonates and reducible fractions among total heavy metal concentration was relatively lower than the other. Since, however total heavy metal concentrations of mining site were relatively higher than those of adjacent region, there is a possibility of heavy metal difussion when the chemical environment of the site changes due to migration of surface and underground water. It is suggested that the preventive measures for water and soil pollution by the heavy metals would be considered around the region.

Investigation and Analysis of Ground Deformation at a Coal Waste Depot in Dogye (도계 석탄폐석 적치장 주변지반의 지형변화 조사 및 분석)

  • Cho, Yong-Chan;Song, Young-Suk;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.199-212
    • /
    • 2011
  • To investigate the causes of ground deformation around the Dogye coal waste depot in Samcheok city, Gangwon Province, we undertook a field survey and performed boring tests and a topographic analysis using maps compiled in various years. The results of boring tests and analyses of ground fractures indicate that the thickness of the soil layer ranges from 9 to 28.5 m and that ground deformation has occurred to the $240{\sim}250^{\circ}$ direction. The topographic analysis revealed that the topography of the site has changed continuously due to the dumping of coal waste. The causes of ground deformation, investigated by both field surveys and the topographic analysis, were the thick layer of soil at this site, the loading weight of coal waste, and the excavation at the lower part of the slope.

Feasibility Study of Slug Test in Unsaturated Mine Tailings Pile of the Imgi Abandoned Mine in Busan (부산임기광산 폐석적치장에서의 순간충격시험 적용성 연구)

  • Park, Hak-Yun;Ju, Jeong-Woung;Cheong, Young-Wook;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.10-16
    • /
    • 2007
  • The slug test by adding water to well and measuring falling head was conducted to investigate the hydrogeological property of unsaturated or partially saturated mine tailings in the Imgi abandoned mine in Busan. In case that wells were installed with a full screen through two layers with different hydraulic properties, Bouwer and Rice method was useful to estimate the hydraulic conductivity and the depth of mine tailings. In particular, when groundwater dried out in the dry season, the slug test performed by adding water into well to form artificial water table and then conducting falling head test produced the reasonable hydraulic conductivity values. The slug test using falling head test can be an alternative to investigate the hydrogeological property of abandoned mine tailings.

Estimation on Unsaturated Characteristic Curves of Tailings obtained from Waste Dump of Imgi Mine in Busan (부산 임기광산 폐석적치장 광미의 불포화 특성곡선 산정)

  • Song, Young-Suk;Kim, Kyeong-Su;Jeong, Sueng-Won;Lee, Choon-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • To investigate the unsaturated characteristics of the tailings obtained from the waste dump at Imgi mine, matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured result, Soil Water Characteristic Curves (SWCC) were estimated by van Genuchten model. According to the unsaturated soil classification method, the tailings of the waste dump correspond to clayey sand. As a result of Suction Stress Characteristic Curve (SSCC) by Lu and Likos model, SSCC has a shape of S which is similar to SWCC. The hysteresis phenomenon occurred in SSCCs, which means the suction stress of drying path is larger than that of wetting path in the same effective degree of saturation. The effective stress of unsaturated soil is equal to that of saturated soil when matric suction is less than Air Entry Value (AEV). However, the effective stress of unsaturated soil is larger than that of saturated soil when matic suction is more than AEV. Meanwhile, unsaturated hydraulic conductivity by van Genuchten model decreased with increasing matric suction, and the hydraulic conductivity of drying path is larger than that of wetting path.

Stability Assesment of the Slope at the Disposal Site of Waste Rock in Limestone Mine (석회석 광산에서 폐석 적치장 사면의 안정성 평가)

  • Lee, Sang-Eun;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.475-490
    • /
    • 2010
  • The analysis of slope stability was performed from seven sites among total eleven sites of waste rock which are divided into two objects (mullock-pile and rock mass) according to the location of dumping-dropping point in L limestone Mine. The analysis of circular failure using Bishop's simplified method and the finite element method for mullock-pile slopes were adopted. For rock mass slopes, identification of failure modes on stereonet projection was determined, thereby limit equilibrium analysis was applied to obtain the safety factor of slopes and the finite element method was used to understand overall behavior of slope. Phi-c reduction method was used to calculate the safety factor of slopes through the finite element method. In mullock-pile slope of zone D and rock slopes of zone F and G, the assurance of slope stability was difficult, and the plans to assure the stability of slopes were proposed on the basis of the analysis of slopes at disposal sites of waste rock. Therefore, the method of piling with waste rock by dozer pushing after dumping for mullock-pile slope of zone D is required, and the method of piling after moving to the place which has no fault zone for rock slope of zone F and G is recommended.

Observation of Volume Change and Subsidence at a Coal Waste Dump in Jangseong-dong, Taebaek-si, Gangwon-do by Using Digital Elevation Models and PSInSAR Technique (수치표고모델 및 PSInSAR 기법을 이용한 강원도 태백시 장성동 폐석적치장의 적치량과 침하관측)

  • Choi, Euncheol;Moon, Jihyun;Kang, Taemin;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1371-1383
    • /
    • 2022
  • In this study, the amount of coal waste dump was calculated using six Digital Elevation Models (DEMs) produced between 2006 and 2018 in Jangseong-dong, Taebaek-si, Gangwon-do, and the subsidence was observed by applying the Persistent Scatterer Interferometric SAR (PSInSAR) technique on the Sentinel-1 SAR images. As a result of depositing activities using DEMs, a total of 1,668,980 m3 of coal waste was deposited over a period of about 12 years from 2006 to 2018. The observed subsidence rate from PSInSAR was -32.3 mm/yr and -40.2 mm/yr from the ascending and descending orbits, respectively. As the thickness of the waste pile increased, the rate of subsidence increased, and the more recent the completion of the deposit, the faster the subsidence tended to occur. The subsidence rates from the ascending and descending orbits were converted to vertical and horizontal east-west components, and 22 random reference points were set to compare the subsidence rate, the waste rock thickness, and the time of depositing completion. As a result, the subsidence rate of the reference point tended to increase as the thickness of the waste became thicker, similar to the PSInSAR results in relation to the waste thickness. On the other hand, there was no clear correlation between the completion time of the deposits and the rate Of subsidence at the reference points. This is because the time of completion of the deposits at all but 5 of the 22 reference points was too biased in 2010 and the correlation analysis was meaningless. As in this study, the use of DEM and PSInSAR is expected to be an effective alternative to compensate for the lack of field data in the safety management of coal waste deposits.