• Title/Summary/Keyword: 폐기물 고화

Search Result 241, Processing Time 0.028 seconds

Evaluation of Characteristics of Simulated Radioactive Vitrified Form Using Cooling Methods (냉각 방법에 따른 모의 방사성폐기물 유리고화체의 특성평가)

  • Lee, Kang-Taek;Lee, Kyu-Ho;Yoon, Duk-Ki;Ryu, Bong-Ki;Kim, Cheon-Woo;Park, Jong-Kil;Hwang, Tae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.865-871
    • /
    • 2006
  • In order to examine and compare the characteristics of two vitrified forms (AG8W1 and DG2) simulated for the operation of a commercial vitrification facility being constructed in Ulchin nuclear power plant, the vitrified forms were cooled by the natural cooling and annealing methods respectively. And the Product Consistency Test (PCT), compressive strength, thermal conductivity, specific heat, phase stability, softening point and Coefficient of Thermal Expansion (CTE) of the vitrified farms were experimented. Consequently, it was shown that there were no significant differences on the physiochemical properties of the vitrified forms performed the natural cooling and annealing.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

Separation Characteristics of NdCl3 from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using Li2CO3 or K2CO3 (탄산화물(Li2CO3, K2CO3)을 이용한 반응증류공정에서 LiCl-KCl 공융염 내 NdCl3의 분리특성)

  • Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Tae-Kyo;Cho, In-Hak;Kim, Na-Young;Yu, Jae-Uk;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • It is necessary to develop an effective waste salt treatment technology for the minimization of radioactive waste generation from the pyroprocessing of spent nuclear fuel. For this reason, the separation characteristics of NdCl3 from LiCl-KCl eutectic salt in a reactive distillation process using Li2CO3 or K2CO3 were observed. NdCl3 was converted into oxychloride (NdOCl) or oxide (Nd2O3) in the reaction model between NdCl3 and the carbonates using HSC-Chemistry, and this result was confirmed in the reactive distillation test of the LiCl-KCl-NdCl3 system using the carbonates. Based on these results, the reactive distillation process conditions were determined to separate NdCl3 into an oxide form (Nd2O3) which can be easily fabricated into a final waste form.

Variations in Heavy Metal Analytical Results and Leaching Characteristics of Coal Ash Recycled Concretes according to Sample Crushing Methods (분쇄방법에 따른 석탄재 재활용 콘크리트의 중금속 분석결과 및 용출특성 변화)

  • Lee, Jin Won;Choi, Seung-Hyun;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.429-438
    • /
    • 2018
  • Since concrete is a hardened aggregates of various materials, it needs to be crushed for chemical analyses. However, the effect of sample crushing on the analytical results has not been precisely assessed till today. In this study, we prepared concrete test pieces using Portand cements and fly ashes as binding materials, and ponded ashes and sands as aggregates and analyzed the heavy metals of the test pieces using Standards for Fair Testing of Soil Contamination (SFTSC) and Wastes (SFTW). For this, each test piece was partially crushed at first and sieved for separation of grains of <0.15 mm, 0.15-0.5 mm, and 0.5-5 mm from the same crushed samples (Crushing Method I). Results of those samples using SFTSC showed a clear trend that analyzed heavy metal concentrations are higher in the finer fractions. Particularly, fractions with <0.15 mm indicated much higher concentrations than the theoretical ones, which were calculated based on the concentrations of individual materials and their mixing fractions. In contrast, the analytical results were generally comparable with the theoretical ones when the test pieces were totally pulverized such that all the crushed grains were <0.15 mm in size (Crushing Method II). These results are associated with the fact that cement materials and fly ashes, which are high in heavy metals relative to other materials, are enriched in the fine fractions. The analytical results using the SFTW derived very low concentrations in most of parameters and did not indicate the dependence of concentrations on the crushing methods due to using distilled water as leaching agent.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(I) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(I))

  • 원종한;안태호;최광휘;최상흘;손진군;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.680-686
    • /
    • 2002
  • The solidification/stabilization mechanism of each cementious material was investigated. It was found that when $C_3$S was hydrated , the Pb element could be transferred to the insoluble Ca[Pb(OH)$_3$.$H_2O$]$_2$and the Cr element to the CaCr $O_4$$H_2O$. The addition of heavy metal tends to delay the hydration until initial 7 days. The Pb element as also delayed the hydration and the Cr element was substituted for the ettringite. On the occasion of the hydration of $C_4$ $A_3$ $S^{S}$, the Pb and Cr ions were solidified/stabilized by the substitution into the ettringite and/or monosulfate. Leaching of the Pb, Cr and Zn elements in the solidified material was extremely little, indicating that heavy metals were effectively solidified/stabilized in the hydrated cementious materials. Solidification/stabilization of heavy metal ions in the industrial wastes such as the STS, BF and COREX sludge was investigated. In case of the mixing ratio of cement and slag was 3 : 7, leaching of hazardous heavy metal ions was very little, indications that the solidification and stabilization was very successful.l.

Na Borosilicate Glass Surface Structures: A Classical Molecular Dynamics Simulations Study (소듐붕규산염 유리의 표면 구조에 대한 분자 동역학 시뮬레이션 연구)

  • Kwon, Kideok D.;Criscenti, Louise J.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.119-127
    • /
    • 2013
  • Borosilicate glass dissolution is an important chemical process that impacts the glass durability as nuclear waste form that may be used for high-level radioactive waste disposal. Experiments reported that the glass dissolution rates are strongly dependent on the bulk composition. Because some relationship exists between glass composition and molecular-structure distribution (e.g., non-bridging oxygen content of $SiO_4$ unit and averaged coordination number of B), the composition-dependent dissolution rates are attributed to the bulk structural changes corresponding to the compositional variation. We examined Na borosilicate glass structures by performing classical molecular dynamics (MD) simulations for four different chemical compositions ($xNa_2O{\cdot}B_2O_3{\cdot}ySiO_2$). Our MD simulations demonstrate that glass surfaces have significantly different chemical compositions and structures from the bulk glasses. Because glass surfaces forming an interface with solution are most likely the first dissolution-reaction occurring areas, the current MD result simply that composition-dependent glass dissolution behaviors should be understood by surface structural change upon the chemical composition change.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

Stabilization of Radioactive Molten Salt Waste by Using Silica-Based Inorganic Material (실리카 함유 무기매질에 의한 폐용융염의 안정화)

  • Park, Hwan-Seo;Kim, In-Tae;Kim, Hwan-Young;Kim, Joon-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • This study suggested a new method to stabilize molten salt wastes generated from the pyre-process for the spent fuel treatment. Using conventional sol-gel process, $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic material that is reactive to metal chlorides were prepared. In this paper, the reactivity of SAP with the metal chlorides at $650{\sim}850$, the thermal stability of reaction products and their leach-resistance under the PCT-A test method were investigated. Alkali metal chlorides were converted into metal aluminosilicate($LixAlxSi1-_xO_{2-x}$) and metal phosphate($Li_3PO_4\;and\;Cs_2AlP_3O_{10}$) While alkali earth and rare earth chlorides were changed into only metal phosphates ($Sr_5(PO_4)_3Cl\;and\;CePO_4$). The conversion rate was about $96{\sim}99%$ at a salt waste/SAP weight ratio of 0.5 and a weight loss up to $1100^{\circ}C$ measured by thermogravimetric analysis were below 1wt%. The leach rates of Cs and Sr under the PCT-A test condition were about $10^{-2}g/m^2\;day\;and\;10^{-4}g/m^2\;day$. From these results, it could be concluded that SAP can be considered as an effective stabilizer for metal chlorides and the method using SAP will give a chance to reduce the volume of salt wasteform for the final disposal through further researches.

  • PDF

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).