• Title/Summary/Keyword: 폐기물 고화

Search Result 241, Processing Time 0.026 seconds

세슘폐흡착재의 붕규산유리고화체에 대한 내침출성 분석

  • 김종호;신진명;전관식;박장진;조영현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.367-372
    • /
    • 1996
  • 석탄화력발전소의 산업부산물인 fly ash를 이용한 폐흡착재의 붕규산유리고화가 능성을 분석하였다. 폐흡착재는 기체상의 세슘이나 루테늄 등을 포집한 후에 발생되는 필터류 등의 고체폐기물을 말하며 본 실험에서는 CsNO$_3$와 fly ash를 몰비로 1.5 : 1 되게 섞어 1200 $^{\circ}C$에서 1시간 가소 시킨 후에 생성되는 pollucite를 모의폐흡 착재로 사용하였다. 폐흡착재를 무게비 15 ~ 30 %로 fly ash, SiO$_2$, $Na_2$CO$_3$, B$_2$O$_3$와 혼합한 후 1150 $^{\circ}C$에서 3시간 용융시켜 붕규산유리화시켰다. 제조된 붕규산유리고화체의 침출성을 평가하기 위하여 2일동안의 soxhlet 침출실험을 수행하였다. 한편 폐흡착재의 붕규산유리고화과정을 알아보기 위하여 붕규산유리고화체의 원료물질에 대하여 유리화과정과 동일한 조건하에서 TG/DTA분석을 수행하였다.

  • PDF

Fabrication of the Cement for the Solidification of the Toxic Waste using Waste Concrete Powder (폐콘크리트 미분말을 이용한 유해 폐기물 고화용 시멘트의 제조)

  • Kim, In-Seob;Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Jong-Gyu;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1133-1137
    • /
    • 2002
  • The cement for solidification of the toxic waste was fabricated using a mixture of the waste concrete powder and blast furnace slag in the ratio of 1:1 and its hydrate morphology and compressive strength of the sample were evaluated in order to apply to the solidification of the COREX sludge. The X-ray diffraction analysis of the sample which prepared by the addition of 10% Portland cement and hemihydrate showed the presence of $Ca(OH)_2$, ettringite, gel-phase and C-S-H hydrate. Compressive strength of the sample exhibited enough high to use as a solidification cement. The strength of the sample was over 140 kgf/$m^2$ in 7 days in case of solidification of the COREX sludge and the sample possess sufficient morphology for the solidification and stabilization of the waste sludge.

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.

Recent Progress in Waste Treatment Technology for Pyroprocessing at KAERI (파이로 공정폐기물 처리기술의 최근 KAERI 연구동향)

  • Park, Geun-Il;Jeon, Min Ku;Choi, Jung-Hoon;Lee, Ki-Rak;Han, Seung Youb;Kim, In Tae;Cho, Yung-Zun;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.279-298
    • /
    • 2019
  • This study comprehensively addresses recent progress at KAERI in waste treatment technology to cope with waste produced by pyroprocessing, which is used to effectively manage spent fuel. The goal of pyroprocessing waste treatment is to reduce final waste volume, fabricate durable waste forms suitable for disposal, and ensure safe packaging and storage. KAERI employs grouping of fission products recovered from process streams and immobilizes them in separate waste forms, resulting in product recycling and waste volume minimization. Novel aspects of KAERI approach include high temperature treatment of spent oxide fuel for the fabrication of feed materials for the oxide reduction process, and fission product concentration or separation from LiCl or LiCl-KCl salt streams for salt recycling and higher fission-product loading in the final waste form. Based on laboratory-scale tests, an engineering-scale process test is in progress to obtain information on the performance of scale-up processes at KAERI.

Dechlorination/Solidification of LiCl Waste by Using a Synthetic Inorganic Composite with Different Compositions (합성무기복합체 조성변화에 따른 모의 LiCl 염폐기물의 탈염소화/고형화)

  • Kim, Na-Young;Cho, In Hak;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.211-221
    • /
    • 2016
  • Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP ($SiO_2-Al_2O_3-P_2O_5$). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding $B_2O_3$ and $Fe_2O_3$ to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of $Al_2O_3$ or $B_2O_3$ as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.