• Title/Summary/Keyword: 평활화

Search Result 375, Processing Time 0.02 seconds

Development of Measuring Technique for Milk Composition by Using Visible-Near Infrared Spectroscopy (가시광선-근적외선 분광법을 이용한 유성분 측정 기술 개발)

  • Choi, Chang-Hyun;Yun, Hyun-Woong;Kim, Yong-Joo
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2012
  • The objective of this study was to develop models for the predict of the milk properties (fat, protein, SNF, lactose, MUN) of unhomogenized milk using the visible and near-infrared (NIR) spectroscopic technique. A total of 180 milk samples were collected from dairy farms. To determine optimal measurement temperature, the temperatures of the milk samples were kept at three levels ($5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$). A spectrophotometer was used to measure the reflectance spectra of the milk samples. Multilinear-regression (MLR) models with stepwise method were developed for the selection of the optimal wavelength. The preprocessing methods were used to minimize the spectroscopic noise, and the partial-least-square (PLS) models were developed to prediction of the milk properties of the unhomogenized milk. The PLS results showed that there was a good correlation between the predicted and measured milk properties of the samples at $40^{\circ}C$ and at 400~2,500 nm. The optimal-wavelength range of fat and protein were 1,600~1,800 nm, and normalization improved the prediction performance. The SNF and lactose were optimized at 1,600~1,900 nm, and the MUN at 600~800 nm. The best preprocessing method for SNF, lactose, and MUN turned out to be smoothing, MSC, and second derivative. The Correlation coefficients between the predicted and measured fat, protein, SNF, lactose, and MUN were 0.98, 0.90, 0.82, 0.75, and 0.61, respectively. The study results indicate that the models can be used to assess milk quality.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

Optimal Monetary Policy System for Both Macroeconomics and Financial Stability (거시경제와 금융안정을 종합 고려한 최적 통화정책체계 연구)

  • Joonyoung Hur;Hyoung Seok Oh
    • KDI Journal of Economic Policy
    • /
    • v.46 no.1
    • /
    • pp.91-129
    • /
    • 2024
  • The Bank of Korea, through a legal amendment in 2011 following the financial crisis, was entrusted with the additional responsibility of financial stability beyond its existing mandate of price stability. Since then, concerns have been raised about the prolonged increase in household debt compared to income conditions, which could constrain consumption and growth and increase the possibility of a crisis in the event of negative economic shocks. The current accumulation of financial imbalances suggests a critical period for the government and central bank to be more vigilant, ensuring it does not impede the stable flow of our financial and economic systems. This study examines the applicability of the Integrated Inflation Targeting (IIT) framework proposed by the Bank for International Settlements (BIS) for macro-financial stability in promoting long-term economic stability. Using VAR models, the study reveals a clear increase in risk appetite following interest rate cuts after the financial crisis, leading to a rise in household debt. Additionally, analyzing the central bank's conduct of monetary policy from 2000 to 2021 through DSGE models indicates that the Bank of Korea has operated with a form of IIT, considering both inflation and growth in its policy decisions, with some responsiveness to the increase in household debt. However, the estimation of a high interest rate smoothing coefficient suggests a cautious approach to interest rate adjustments. Furthermore, estimating the optimal interest rate rule to minimize the central bank's loss function reveals that a policy considering inflation, growth, and being mindful of household credit conditions is superior. It suggests that the policy of actively adjusting the benchmark interest rate in response to changes in economic conditions and being attentive to household credit situations when household debt is increasing rapidly compared to income conditions has been analyzed as a desirable policy approach. Based on these findings, we conclude that the integrated inflation targeting framework proposed by the BIS could be considered as an alternative policy system that supports the stable growth of the economy in the medium to long term.