• Title/Summary/Keyword: 평행 스러스트 베어링

Search Result 14, Processing Time 0.016 seconds

Mixed Lubrication Analysis of Parallel Thrust Bearing Considering Surface Roughness (표면거칠기를 고려한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.455-460
    • /
    • 2000
  • The real area of contacts, average film thickness, mean real pressure, and mean hydrodynamic pressure are investigated numerically in this study, especially for the parallel thrust bearing. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation contained flow factors and contact factor is applied to predict the effects of surface roughness in mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness and contact factor is introduced to relieve from obtaining the average film thickness. Therefore the computation time to obtain barh h can be reduced.

Mixed Lubrication Analysis of Parallel Thrust Bearing by Surface Topography (Surface Topography를 이용한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2000
  • Effects of surface roughness on bearing performances are investigated numerically in this study, especially for the parallel thrust bearing. Although mating surfaces are parallel and separated by thin fluid film, the pressure distribution is formed due to asperities. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation is applied to predict the effects of surface roughness between hydrodynamic and mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness. The correlation length is proposed to get the minimum load for the parallel thrust bearing for various sliding conditions.

An Analysis of Mixed Lubrication in Thrust Bearing by Surface Topography (Surface Topography를 이 용한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.136-145
    • /
    • 1999
  • This paper describes the surface roughness effect in parallel thrust bearing. In mixed lubrication, some contacts will take place between asperities, and partial lubrication will occur. An average Reynolds Equation is utilized to determine effects of surface roughness on partially lubricated contacts. By using an autocorrelation function for the surface profile, surface model is generated numerically Although the two surfaces are parallel in thrust bearing separated by thin film, the pressure peak is formed due to asperites. By means of surface profile parameters, it is shown that which surface is optimal for the parallel thrust bearing.

  • PDF

Lubrication Characteristics of Micro-Textured Slider Bearing: Effect of Dimple Density (Micro-Texturing한 Slider Bearing의 윤활특성 : 딤플 밀도의 영향)

  • Park, Tae Jo;Lee, Joon Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.437-442
    • /
    • 2013
  • In recent times, surface texturing methods have been widely applied to reduce friction and improve the reliability of machine components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, a numerical analysis is carried out to investigate the effect of uniformly spaced hemispherical dimples on the lubrication characteristics of a slider bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The pressure distributions, load capacity, leakage flowrate, and friction force are strongly affected by the dimple diameter and the number of dimples. In particular, the load capacity and friction force decrease linearly with the dimple density whereas the leakage increases. These results can be used for designing the optimum dimple characteristics in order to improve the lubrication performance of slider bearings, for which further studies are required.