• Title/Summary/Keyword: 평면 추적

Search Result 139, Processing Time 0.027 seconds

Vertical Buoyant Jet in Tidal Water-Stagnant Environment (조석(潮汐)의 영향을 받는 수역(水域)에서 연직상향부력(鉛直上向浮力)? -정지수역(靜止水域)-)

  • Yoon, Tae Hoon;Cha, Young Kee;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.93-101
    • /
    • 1986
  • The behavior of a plane buoyant jet discharged vertically upward into a stagnant uniform environment is analyzed by continuity, momentum transport equation by numerical scheme. The governing equations are solved by finite difference method employing stream function and vorticity transport and Prandtl's turbulent model. Results for centerline velocities and temperatures, temperature distribution and flow pattern in receiving environment due to buoyant jet in the range of discharge densimetric Froude number of 4 to 32 show good agreement with published data. Spreading rate and dispersion ratio, which are required in integral type analysis of whole range of buoyant jet and have not been obtained yet, are derived in terms of discharge densimetric Froude number and vertical distance from source.

  • PDF

Hand Gesture Interface for Manipulating 3D Objects in Augmented Reality (증강현실에서 3D 객체 조작을 위한 손동작 인터페이스)

  • Park, Keon-Hee;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, we propose a hand gesture interface for the manipulation of augmented objects in 3D space using a camera. Generally a marker is used for the detection of 3D movement in 2D images. However marker based system has obvious defects since markers are always to be included in the image or we need additional equipments for controling objects, which results in reduced immersion. To overcome this problem, we replace marker by planar hand shape by estimating the hand pose. Kalman filter is for robust tracking of the hand shape. The experimental result indicates the feasibility of the proposed algorithm for hand based AR interfaces.

New Image Processing Methodology for Noisy-Blurred Images (잡음으로 훼손된 영상에 대한 새로운 영상처리방법론)

  • Jeon, Woo-Sang;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.965-970
    • /
    • 2010
  • In this paper, a iterative image restoration method is proposed to restore for noisy-blurred images. In conventional method, regularization is usually applied to all over the without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solvethis problem we proposed an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with no direction for flat regions. We verified that the proposed methods showed better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

Measurements of the Trajectories of Moving Objects with Video System and Image Matching (비디오 시스템과 영상매칭에 의한 운동물체의 거동측정)

  • 이창경;조우석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.331-341
    • /
    • 2002
  • In order to extract 3-dimensional information from 2-D image, stereo images are prerequisite. Moreover, for the measurement of moving objects, the synchronized sequential stereo images have to be captured and image matching should be implemented for determining the location of moving objects. In this research, a simple method computing 3-dimensional coordinates from sequential images of moving objects was implemented. The sequential stereo images were captured by a video camera with a beam splitter. Once video images were digitalized by frame grabber, the interest points were extracted and matched in each stereo image, and the coordinates of center of them are calculated using weighted average method. Then, 3-dimensional coordinates of moving objects were computed by DLT algorithms.

A Study on the Possibility of Producing a Floor Plan of 「Donggwoldo(東闕圖)」 through the Use of Rubber Sheeting Transformation - With a Focus on the Surroundings near the Geumcheongyo Bridge in Changdeokgung Palace - (러버쉬팅변환을 통한 「동궐도(東闕圖)」의 평면도 제작 가능성 연구 - 창덕궁 금천교 주변을 중심으로 -)

  • Lee, Jae-Yong;Kim, Young-Mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.104-121
    • /
    • 2017
  • The present study attempted to produce the floor plan of the surroundings near Geumcheongyo Bridge in Changdeokgung Palace of the Late Joseon Period through the use of rubber sheeting transformation based on the drawing principles of "Donggwoldo(東闕圖)". First, the study compared the actual sizes of the major buildings that have existed since the production of "Donggwoldo(東闕圖)" with the sizes depicted in the picture to reveal that the front elevation of the buildings was produced by reducing it by approximately 1/200. However, the study could not confirm the same production proportions for the side elevation. Only the lengths of the side elevation were depicted at around half of the actual proportions, and as the diagonal line angles were found to be at an average of $39^{\circ}$, the study confirmed they were drawn in a manner similar to cabinet projection. Second, the study created an obliquely projected floor plan by inversely shadowing the drawing principles of "Donggwoldo(東闕圖)" and produced a floor plan of the surroundings near Geumcheongyo Bridge in Changdeokgung Palace through the use of rubber sheeting transformation. Projective transformation was confirmed as most suitable during the transformation, and with standard error of 2.1208m, the relatively high accuracy of the transformation shows that the production of a floor plan for "Donggwoldo(東闕圖)" is significant. Furthermore, it implies the possibility of producing floor plans for various documentary paintings produced using the paralleled oblique drawing method in addition to "Donggwoldo(東闕圖)". Third, the study evaluated the accuracy of the spatial information provided by the produced floor plan by comparing the three items of Geumcheongyo Bridge location, Geumcheongyo Bridge and Jinseonmun Gate arrangement, and Geumcheon stone embankment location. The results confirmed the possibility of utilizing the floor plan as a useful tool which helps understand the appearance of the surroundings at the time of "Donggwoldo(東闕圖)" production because it is parallel to the excavation results of the Geumcheongyo Bridge and its context. Therefore, the present study is significant in that it seeks the possibility of producing spatial information recorded in "Donggwoldo(東闕圖)" by applying rubber sheeting transformation and consequently in that it presents a new methodology for understanding the appearance of the East Palace of the Late Joseon Period.

Spherical Panorama Image Generation Method using Homography and Tracking Algorithm (호모그래피와 추적 알고리즘을 이용한 구면 파노라마 영상 생성 방법)

  • Munkhjargal, Anar;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.42-52
    • /
    • 2017
  • Panorama image is a single image obtained by combining images taken at several viewpoints through matching of corresponding points. Existing panoramic image generation methods that find the corresponding points are extracting local invariant feature points in each image to create descriptors and using descriptor matching algorithm. In the case of video sequence, frames may be a lot, so therefore it may costs significant amount of time to generate a panoramic image by the existing method and it may has done unnecessary calculations. In this paper, we propose a method to quickly create a single panoramic image from a video sequence. By assuming that there is no significant changes between frames of the video such as in locally, we use the FAST algorithm that has good repeatability and high-speed calculation to extract feature points and the Lucas-Kanade algorithm as each feature point to track for find the corresponding points in surrounding neighborhood instead of existing descriptor matching algorithms. When homographies are calculated for all images, homography is changed around the center image of video sequence to warp images and obtain a planar panoramic image. Finally, the spherical panoramic image is obtained by performing inverse transformation of the spherical coordinate system. The proposed method was confirmed through the experiments generating panorama image efficiently and more faster than the existing methods.

A Camera Tracking System for Post Production of TV Contents (방송 콘텐츠의 후반 제작을 위한 카메라 추적 시스템)

  • Oh, Ju-Hyun;Nam, Seung-Jin;Jeon, Seong-Gyu;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.692-702
    • /
    • 2009
  • Real-time virtual studios which could run only on expensive workstations are now available for personal computers thanks to the recent development of graphics hardware. Nevertheless, graphics are rendered off-line in the post production stage in film or TV drama productions, because the graphics' quality is still restricted by the real-time hardware. Software-based camera tracking methods taking only the source video into account take much computation time, and often shows unstable results. To overcome this restriction, we propose a system that stores camera motion data from sensors at shooting time as common virtual studios and uses them in the post production stage, named as POVIS(post virtual imaging system). For seamless registration of graphics onto the camera video, precise zoom lens calibration must precede the post production. A practical method using only two planar patterns is used in this work. We present a method to reduce the camera sensor's error due to the mechanical mismatch, using the Kalman filter. POVIS was successfully used to track the camera in a documentary production and saved much of the processing time, while conventional methods failed due to lack of features to track.

3D Reconstruction of an Indoor Scene Using Depth and Color Images (깊이 및 컬러 영상을 이용한 실내환경의 3D 복원)

  • Kim, Se-Hwan;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • In this paper, we propose a novel method for 3D reconstruction of an indoor scene using a multi-view camera. Until now, numerous disparity estimation algorithms have been developed with their own pros and cons. Thus, we may be given various sorts of depth images. In this paper, we deal with the generation of a 3D surface using several 3D point clouds acquired from a generic multi-view camera. Firstly, a 3D point cloud is estimated based on spatio-temporal property of several 3D point clouds. Secondly, the evaluated 3D point clouds, acquired from two viewpoints, are projected onto the same image plane to find correspondences, and registration is conducted through minimizing errors. Finally, a surface is created by fine-tuning 3D coordinates of point clouds, acquired from several viewpoints. The proposed method reduces the computational complexity by searching for corresponding points in 2D image plane, and is carried out effectively even if the precision of 3D point cloud is relatively low by exploiting the correlation with the neighborhood. Furthermore, it is possible to reconstruct an indoor environment by depth and color images on several position by using the multi-view camera. The reconstructed model can be adopted for interaction with as well as navigation in a virtual environment, and Mediated Reality (MR) applications.

  • PDF

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.