• 제목/요약/키워드: 평면 엔드밀

검색결과 7건 처리시간 0.018초

티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구 (A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining)

  • 정화
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

평 엔드밀을 이용한 평면가공에서의 가공면 형성기구 (Plane Surface Generation with a Flat End Mill)

  • 류시형;김민태;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

평면 엔드밀의 최적 가공조건을 위한 실험계획법의 적용 (Application of Design of Experiment Optimum Working Condition in Flat End-Milling)

  • 이상재;배효준;서영백;박흥식;전태옥
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.20-25
    • /
    • 2003
  • The End-milling has been widely used in the industrial world because it is effective to cutting working with various shape. Recently the end-milling is demanded the high-precise technique with good surface roughness and rapid manufacturing time for precision machine and electronic elements. The cutting working of end-milling such as, cutting direction, revolution of spindle, feed rate and depth of cut have an effect on optimum surface roughness. This study was carried out to decide the working condition for optimum surface roughness and rapid manufacturing time by design of experiment and ANOVA. From the results of this study, the optimum working condition for end milling is upward cutting in cutting direction, 600rpm in revolution of spindle, 240mm/mm in feed rate, 2mm in axial depth of cut and 0 25mm in radial depth of cut. The design of experiment has become an useful method to select optimum working condition mend-milling.

  • PDF

티타늄합금 황삭가공에서 냉각방법에 따른 절삭공구 마모특성에 관한 연구 (A Study on Characteristics of Cutting Tool Wear by Cooling Method in Rough Machining of Titanium Alloy)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.129-134
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace important parts and automobile important parts, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting tool cooling method and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the feed rate, cutting time and spindle speed are raised.

티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구 (A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

가공경로가 밀링가공면의 기하학적 특성에 미치는 영향 (Effects of the Tool Path on the Geometric Characteristics of Milled Surface)

  • 박문진;김강
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.58-63
    • /
    • 1998
  • There are lots of factors that are related to the geometric characteristics of machined surface. Among them, the tool path and milling mode (up cut milling or down cut milling) are the easiest controllable machining conditions. Thus, the first objective of this research is to study the effects of them on the milled surface that is generated by an end milling tool. To get precision parts, not only the machining process but also the measurement of geometric tolerance is important. But, this measurement requires a lot of time, because the infinite surface points must be measured in the ideal case. So, the second objective is to propose a simple flatness measurement method that can be available instead of the 3-D geometric tolerance measurement method, using a scale factor and characterized points. Finally, it is also shown that the possibility of flatness improvement by shifting the consecutive fine cutting tool path as compared with the last rough cutting tool path.

  • PDF

티타늄 황삭가공에 있어서 절삭공구의 마모 특성에 관한 연구 (A Study on Wear Characteristics of Cutting Tools in a Titanium Roughing Cut Machining)

  • 배명환;정화;박형렬
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.67-73
    • /
    • 2016
  • The application of titanium has been gradually rising because the utilizing ranges for low weight and high strength are rapidly increased by the need for improving the fuel economy in production industries such as the aviation and automotive in recent. The purpose in this study is to investigate the appropriate cutting conditions on the life of flat and round end mills by measuring the maximum cutting temperature relative to the machining time, and calculating the wear rates of cutting tool with the spindle speed and feed rate of vertical machining center as a parameter in the titanium roughing cut machining which is widely used in critical parts of aircraft, cars, etc. When the wetted roughing cut machining of titanium with a soluble cutting oil is conducted by the flat and round end mills, the maximum cutting temperatures for a variety of spindle speed and feed rate are measured at ten-minute intervals during 60 minutes by an infrared thermometer, and the wear rates of cutting tool are calculated by the weight ratios based on tool wear before and after the experiment. It is found that the maximum cutting temperature and the wear rates of cutting tool are raised as the cutting amount per tool edge is increased with the rise of feed rate, in this experimental range, and as the frictional area due to the rise of contacting friction numbers between tool and specimen is increased with the rises of cutting time and spindle speed. In addition, the increasing rate of maximum cutting temperature in the flat and round end mills are the highest for the cutting time from 50 to 60 minutes, and the wear rate of cutting tool in the flat end mill is 1.14 to 1.55 times higher than that in the round end mill for all experimental conditions.