• Title/Summary/Keyword: 평면도형

Search Result 60, Processing Time 0.086 seconds

International Achievement in Mathematics Content Areas Based on TIMSS 2003 (TIMSS 2003의 내용 영역별 수학 성취도 국제 비교)

  • Kim, Sun-Hee;Kim, Kyung-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.2
    • /
    • pp.239-261
    • /
    • 2008
  • This study presents results by the content areas in mathematics. Average performance is provided for five content areas: number, algebra, measurement, geometry, and data. Relative achievement is shown among the content areas for 4 countries in comparison to Korea. In number, Korea had lower average achievement than Singapore, especially for ratio proportion percent. Among 5 countries, Korea had the highest average achievement in algebra and geometry, but the lowest in attributes and units of measurement. In data, Korean students didn't learn the followings successfully: a) comparing characteristics of data sets and using mean, median, range, and shape of distribution, b) interpreting data sets (e.g., draw conclusions, make predictions, and estimate values between and beyond given data points), c) evaluating interpretations of data with respect to correctness and completeness of interpretation.

  • PDF

수학교사들의 내용지식이 학생들의 기하 평가에 미치는 영향

  • Go, Sang-Suk;Jang, Hun
    • Communications of Mathematical Education
    • /
    • v.19 no.2 s.22
    • /
    • pp.445-452
    • /
    • 2005
  • 본 연구는 중 고등학교 교사 50명에 대하여 기하 문제의 논증기하적 또는 해석기하적 문제해결 전략이 학생들의 평가에 어떤 영향을 미치는가를 조사한 것이다. 중학교에서 고등학교로 진학하면 도형의 문제에 대한 해석기하적인 문제해결 능력은 교육과정 상 대단히 중요하게 가르쳐야 할 내용이다. 유클리드 기하에 바탕을 둔 논증기하의 지식은 좌표평면의 도형을 방정식으로 나타내고 연구하는 해석기하의 기본이다. 그럼에도 불구하고 많은 학생들은 논증기하적 문제해결을 선호하는 반면 해석기하적 문제해결은 어려워한다. 또한 논증기하적 문제 형태에는 논증기하적 문제해결 전략, 해석기하적 문제 형태에는 해석기하적 문제해결 전략을 구사하는 경향을 보인다. 본 연구는 중 고등학교 교사들의 기하 문제에 대한 내용 지식이 학생 평가에 미치는 영향에 초점이 맞추어져 있다.

  • PDF

The Development of a chapter of middle school mathematics textbook according to the learners' self-directed learning model (자기 주도적 학습 지원 모형에 따른 중학교 수학 교과서 시범 단원 개발)

  • Hwang, Hye Jeang;Cho, Wan Young;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.331-347
    • /
    • 2017
  • The purpose of this study is to develop a sample chapter of mathematics textbook at the first middle school according to the model of supporting learners' self-directed learning. The self-directed learning is a learning strategy to develop learner's ability to solve unstructured problems by himself or herself. Basically, the textbook should included learning objectives distinctively. Second textbook should consist of some appropriate method for learners to learn content. Third, it suggests some plans to utilize learning strategies of this model effectively when authors or developers develop textbooks in future. Based on those condition, it is also requested that the sample chapter of the textbook be develop in order to study interestingly as well as to implement self-directed study, and content materials using mixed diverse subjects would be included in the chapter. Furthermore, the sample chapter which is suitable to the semester of managing self-directed learning middle school would be developed. For this purpose, in this study the 'Plane shapes' was selected dealt with in the first middle school. The sample chapter is developed at first by the researchers and then revised and completed through the checking from the professionalists two times.

A Comparative Study on Teaching Contents for Angle and Measure of an Angle in Elementary Mathematics Textbook between Korea and Japan (우리나라와 일본의 초등학교 수학 교과서에서의 각 및 각도 지도 내용 비교 연구)

  • Park, Kyo Sik
    • School Mathematics
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • In this paper, the teaching contents for angle and measure of an angle in elementary mathematics textbook between Korea and Japan were compared. From this comparison, the following five suggestions were presented as implications to improve the teaching contents for angle and measure of an angle in elementary mathematics textbook in Korea. First, it is necessary to reconsider the way of the definition of angle. There is no use of half line in elementary mathematics, except when to define angle, and the way to define angle and the way to define right angle are not consistent. Second, considering to associate the turning of plane geometrical figures to the $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ is necessary, and associating them is connected to dealing with point-symmetrical shapes in the fifth grade. Third, there is a need to deal with "the measures of angles are same." in comparing angles. This is possible by superimposing two angles in comparing the measures of them. Fourthly, it is necessary to consider the introduction of the rotational angle. Dealing with the $360^{\circ}$ as the rotational angle is related to explaining that the sum of measures of interior angles in quadrangle is $360^{\circ}$. Fifth, it is necessary to be connected with middle school mathematics curriculum. The term 'straight angle' is used in middle school, and to obtain the sum of the measures of the interior angles of a regular polygon is the contents to be dealt with in middle school.

Comparative Analysis of Elementary Mathematics Textbooks in Korea and China: Focused on the area of Geometry (우리나라와 중국의 초등수학 교과서의 도형영역 비교.분석)

  • Yu, Jaehyuk;Lee, Daehyun
    • Education of Primary School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.57-70
    • /
    • 2013
  • This study is aimed to compare the area of geometry of elementary mathematics textbooks in korea and china. Through this study, we would like to suggest some guidelines in order to develop geometric curriculum and textbooks in korea and to search for more efficient methods of learning mathematics. For this, we have looked through the general characteristics of geometry domain in mathematics curriculums and the textbooks in korea and china. Furthermore, we have found the similarities and differences while comparing specific contents in the two countries. The followings are the conclusions of this study. First, The mathematics curriculum in korea is divided into 'figure' domain, but the one in china is divided into 'space and figure' domain, which deals with figure and measurement. And china constructs the contents of the basic figure as a whole unit. Second, korea gives clear learning aims about contents whereas china gives learning activities. Lastly, when starting teaching a plain figure, korea focuses on checking and finding definitions and characters through fundamental figures. However, china focuses on figuring out components and the relations among them throughout various plain figure activities.

An Analysis on Structural Knowledges by Concept Maps -Focused on Plane Figures in Elementary School- (개념도를 이용한 구조적 지식의 조사 연구 -초등학교 평면 도형 단원을 중심으로-)

  • 정승진;박배훈
    • Education of Primary School Mathematics
    • /
    • v.2 no.1
    • /
    • pp.65-73
    • /
    • 1998
  • The purpose of this study is to investigate significant differences of structural knowledges among the groups(high, middle, low) when the 6th grade subjects structured the concepts of the plane figures, triangle and quadrangle, by concept maps, and to analyse the features of concept maps according to hierarchy. For this purpose, the following two research contents were investigated: 1. Investigating significant differences of structural knowledge in the concepts of the plane figures using concept maps among the groups(high, middle, low). 2. Analysing the features of concept maps according to hierarchy. The structural knowledges represented on the concept maps of triangle and quadrangle which were drawn by the subjects were analysed by propositions, hierarchies, and cross-links. Subject-self Reports about how to make the concept maps were used to analyse the features of concept maps according to hierarchy. The conclusions drawn from the results were as fellows: First, there were significant differences among the groups in proposition links. Second, there wasn't my significant difference among the groups in hierarchy. Third, there were significant differences among the groups in cross-links, and Fourth, the results of analysing the concept maps by hierarchy showed that there were differences among the individuals in constructing the knowledges.

  • PDF

A Study on the Configuring Process of Secondary Mathematically Gifted about the Hyperbolic Plane Tessellation Using Dynamic Geometry Software (GSP의 쌍곡원반모형을 활용한 중학교 수학영재 학생들의 쌍곡평면 테셀레이션 구성과정에 관한 연구)

  • Lew, Hee Chan;Lee, Eun Joo
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.957-973
    • /
    • 2013
  • This study analyzed Secondary Mathematically Gifted' mathematical thinking processes demonstrated from the activities. They configured regular triangle tessellations in the Non-Euclidean hyperbolic disk model. The students constructed the figure and transformation to construct the tessellation in the poincare disk. gsp file which is the dynamic geometric environmen, The students were to explore the characteristics of the hyperbolic segments, construct an equilateral triangle and inversion. In this process, a variety of strategic thinking process appeared and they recognized to the Non-Euclidean geometric system.

  • PDF

The geometry of Sulbasu${\={u}}$tras in Ancient India (고대 인도와 술바수트라스 기하학)

  • Kim, Jong-Myung;Heo, Hae-Ja
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.15-29
    • /
    • 2011
  • This study was carrying out research on the geometry of Sulbas${\={u}}$tras as parts of looking for historical roots of oriental mathematics, The Sulbas${\={u}}$tras(rope's rules), a collection of Hindu religious documents, was written between Vedic period(BC 1500~600). The geometry of Sulbas${\={u}}$tras in ancient India was studied to construct or design for sacrificial rite and fire altars. The Sulbas${\={u}}$tras contains not only geometrical contents such as simple statement of plane figures, geometrical constructions for combination and transformation of areas, but also algebraic contents such as Pythagoras theorem and Pythagorean triples, irrational number, simultaneous indeterminate equation and so on. This paper examined the key features of the geometry of Sulbas${\={u}}$tras and the geometry of Sulbas${\={u}}$tras for the construction of the sacrificial rite and the fire altars. Also, in this study we compared geometry developments in ancient India with one of the other ancient civilizations.

An Analysis on the Concept and Measuring Activities of the Height of Figures in Elementary School Mathematics Textbooks2 (초등학교 수학 교과서에 서술된 높이 개념과 측정 활동 분석)

  • Paek, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.113-125
    • /
    • 2016
  • The concept and measuring activities of the height of figures are essential to find the areas or volumes of the corresponding figures. For plane figures, the height of a triangle is defined to be the line segment from a vertex that is perpendicular to the opposite side of the triangle, whereas the height of a parallelogram(trapezoid) is defined to be the distance between two parallel sides. For the solid figures, the height of a prism is defined to be the distance of two parallel bases, whereas the height of a pyramid is defined to be the perpendicular distance from the apex to the base. In addition, the height of a cone is defined to be the length of the line segment from the apex that is perpendicular to the base and the height of a cylinder is defined to be the length of the line segment that is perpendicular to two parallel bases. In this study, we discuss some pedagogical problems on the concepts and measuring activities of the height of figures to provide alternative activities and suggest their educational implications from a teaching and learning point of view.

컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료 개발 및 활용 방안

  • Im, Hae-Gyeong;Park, Eun-Yeong
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.563-589
    • /
    • 2002
  • 고학년으로 갈수록 지필 환경에만 머무르는 현실 속에서 생활 및 예술 작품 등에서 수학적 원리와 개념을 발견하도록 하는 테셀레이션 수업은 학생들의 흥미와 호기심을 유발하고 수학의 아름다움을 느끼게 하는 것 이상으로 기하학적 사고의 기초를 학습하는데 도움을 줄 수 있다. 이에 본 연구는 4학년까지 적용되고 있는 7차 교육과정을 중심으로 새롭게 등장하고 있는 테셀레이션에 대한 이해 및 교수 학습 자료가 체계적으로 정비되어 있지 못한 현실적인 문제의 해결 방안으로서 테셀레이션을 활용한 수학 학습의 내용을 분석하여 교사들에게는 테셀레이션의 이해 및 교수 학습 자료로서 , 학생들에게는 수학의 기하적 개념들을 쉽고 재미있게 학습할 수 있는 학습도구로서 활용할 수 있도록 하는 것을 목적으로 테셀레이션을 구현할 수 있는 컴퓨터 소프트웨어를 활용하여 테셀레이션 교수 학습 자료를 개발하였고 이를 위해 다음과 같은 연구 내용을 설정하였다. 가. 테셀레이션의 정의와 예 그리고 종류를 알아보고 테셀레이션 속의 수학적 개념을 활용방법과 함께 제시한다. 나. 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 테셀레이션을 적용할 수 있는 내용영역을 분석하고 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한다. 다. 제작된 테셀레이션 교수 학습 자료의 효과적 활용을 위한 활용 방안을 탐색한다. 라. 제작된 테셀레이션 교수 학습 자료의 활용 효과를 알아보기 위해 적용 실험을 하고 이에 대한 학생들의 반응을 분석하여 학습의 효과를 밝힌다. 제작된 테셀레이션 교수 학습 자료의 적용 실험을 위하여 광주대성초등학교 6학년 한 반을 선정하였고 약 4주에 걸쳐 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료를 투입하여 4번의 활동수업을 실시하였다. 수업 후 작성된 학습지와 소감문 및 연구자에 의해 관찰된 수업내용을 바탕으로 다음과 같은 연구 결과를 얻을 수 있었다. 첫째, 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한 결과 지필적 환경에서 제한적이었던 탐구하고 조작해보는 활동을 할 수 있는 역동적인 수학 실험실 환경이 제공됨으로써 도구적 이해가 아닌 관계적 이해를 하는 것을 확인할 수 있었다. 수학적 개념을 암기하는 것에서 벗어나 자연스런 조작을 통해 학생들이 개념을 이해하고 탐구하는 과정 속에서 학생들은 수학을 공부한다기 보다는 수학 속에서 재미있게 놀이한다는 생각을 가지고 수업에 참여하였고 배우는 즐거움을 알고 자신감을 가지며 더 나아가 창의적인 생각을 하도록 하는 기회를 줄 수 있었다. 둘째, 테셀레이션은 우리 생활 속에서 쉽게 발견할 수 있는 것으로 수학이 단순히 책에서만 한정되지 않고 다양한 분야 즉 디자인, 생활 속에서의 벽지문양과 포장지, 예술작품 등에 활용되고 있음을 체험함으로써 수학이 실생활에 광범위하게 활용되고 있음을 알게 하였다. 역으로 생활 속에서의 테셀레이션을 통해 수학적 개념을 찾는 과정을 통해 수학이 아름다우면서도 실용적이라는 생각을 심어줄 수 있었다. 셋째, 테셀매니아, GSP, 캐브리, 거북기하 등 평소 수업에서는 활용도가 적은 컴퓨터 소프트웨어를 활용함으로써 컴퓨터 소프트웨어 자체에서 오는 호기심뿐만이 아니라 직접 조작하여 테셀레이션 작품과 개념을 익히고 새로운 작품과 학습을 해 내는 과정을 통해 자신감과 성취감 등에 있어 큰 변화가 있음을 발견할 수 있었다. 컴퓨터 기능이 미숙한 학생의 경우 처음에는 당황해 하고 어려워하는 부분도 있었으나 조작할 시간적 여유를 주고 교사와 우수한 학생들이 도우미로서 역할을 잘해내어 나중에는 큰 어려움 없이 마칠 수 있었다. 테셀레이션이라는 용어가 아직은 생소한 현장에서 교수 학습 자료가 부족하고 그에 따른 이해도 부족한 현실 속에서 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료가 교수 학습 현장에 투입되어 유용하게 사용될 수 있는지 그 가능성을 조사한 것을 목적으로 한 본 연구의 결과로서 테셀레이션이라는 주제는 도형 영역과 규칙성과 함수 영역에서 평면 도형의 각과 모양 등의 성질을 탐구하게 하고, 대칭변환의 개념을 효율적으로 학습하게 할 수 있고, 반복되는 모양에서 규칙성을 발견하고 부분과 전체를 파악하여 패턴을 인지할 수 있게 하며 제작하고 분석하는 과정을 통해 여러 가지 수학적 개념과 수학적 창의성, 수학적인 아름다움을 느끼게 할 수 있음을 발견할 수 있었다. 또한 테셀레이션은 수학적 개념은 물론 수학과 미술, 수학과 일상 생활과의 연결성을 논의하고 확인하는 데 흥미로운 주제가 될 수 있다. 초등학교 교육과정에서 새롭게 도입되고 있는 테셀레이션을 활용하여 지도하기 위한 교수 학습 자료로 유용하게 사용될 수 있고 앞으로는 테셀레이션과 관련된 내용이 직접적으로 교육과정 내에서 다루어지고, 또한 테셀레이션을 적용한 수업이 학생들의 기하학적 사고 및 수학적 태도에 미치는 영향과 관련한 연구가 뒤따라야 할 것으로 본다.

  • PDF