• 제목/요약/키워드: 평균 명암 측정

검색결과 21건 처리시간 0.014초

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.29-40
    • /
    • 2022
  • 본 논문에서는 딥러닝 기법의 하나인 Mask R-CNN과 랜덤포레스트 분류기를 이용해 당뇨병성 망막병증의 병리학적인 특징을 검출하고 분석하여 자동 진단하는 시스템을 연구하였다. 당뇨병성 망막병증은 특수장비로 촬영한 안저영상을 통해 진단할 수 있는데 밝기, 색조 및 명암은 장치에 따라 다를 수 있으며 안과 전문의의 의료적 판단을 도울 인공지능을 이용한 자동진단 시스템 연구와 개발이 가능하다. 이 시스템은 미세혈관류와 망막출혈을 Mask R-CNN 기법으로 검출하고, 후처리 과정을 거쳐 랜덤포레스트 분류기를 이용하여 안구의 정상과 비정상 상태를 진단한다. Mask R-CNN 알고리즘의 검출 성능 향상을 위해 이미지 증강 작업을 실시하여 학습을 진행하였으며 검출 정확도 측정을 위한 평가지표로는 다이스 유사계수와 Mean Accuracy를 사용하였다. 비교군으로는 Faster R-CNN 기법을 사용하였고 본 연구를 통한 검출 성능은 평균 90%의 다이스 계수를 통한 정확도를 나타내었으며 Mean Accuracy의 경우 91% 정확도의 검출 성능을 보였다. 검출된 병리증상을 토대로 랜덤포레스트 분류기를 학습하여 당뇨병성 망막 병증을 진단한 경우 99%의 정확도를 보였다.