• Title/Summary/Keyword: 평균회귀

Search Result 2,326, Processing Time 0.031 seconds

A Study on Estimation of Soil Moisture Multiple Quantile Regression Model Using Conditional Merging and MODIS Land Surface Temperature Data (조건부 합성기법과 MODIS LST를 활용한 토양수분 다중분위회귀모형 산정 연구)

  • Jung, Chung Gil;Lee, Ji Wan;Kim, Da Rae;Kim, Se Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.23-23
    • /
    • 2018
  • 본 연구에서는 다중분위회귀분석모형(Multiple Quantile Regression Model, MQRM)과 MODIS(MODerate resolution Imaging Spectroradiometer) LST (Land Surface Temperature) 자료를 이용하여 전국 공간토양수분을 산정하였다. 공간토양수분을 산정하기 위한 과정은 크게 두가지로 구분된다. 첫 번째로 기존의 MODIS LST 자료를 조건부 합성 보정기법을 적용하여 실측 LST 자료와 비교하여 위성 LST 자료가 갖고 있는 오차를 보정하였다. 그 결과, 조건부 합성 보정기법을 적용하기전 전국 71개 지상관측지점에서 관측한 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.70으로 어는정도 유의성 있는 상관관계를 나타냈으나 조건부 합성 보정기법을 적용한 후 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.92로 상당히 크게 향상됨을 알 수 있었다. 두 번째로 보정된 MODIS LST를 이용하여 다중분위회귀분석 모형을 개발하고 토양수분을 예측하는 단계로 입력자료로 위성영상 자료와 관측자료를 융합하여 사용하였다. 위성영상 자료로는 보정된 MODIS LST와 MODIS NDV를 구축하였고 일단위 강수량 및 일조시간의 기상자료는 기상청으로부터 전국 71개 지점에 대해 구축하여 IDW 공간보간기법을 이용한 공간자료로 구축하였다. 토양수분 결과를 비교하기 위한 관측 토양수분은 자동농업기상관측(Automated Agriculture Observing System, AAOS)지점에서 2013년 1월부터 2015년 12월까지의 실측 일단위 토양수분 자료를 구축하여 사용하였다. 다중분위회귀분석 모형은 LST 인자를 중심으로 각각의 분위(0.05, 0.25, 0.5, 0.75, 0.95)에 해당되는 값의 회귀식을 NDVI, 강수 입력자료를 독립인자로서 조합하여 계절 및 토성에 따른 총 80개의 회귀식을 산정하였다. 관측 토양수분과 모의 토양수분을 비교한 결과 $R^2$가 0.70 (철원), 0.90 (춘천), 0.85 (수원), 0.65 (서산), 0.78 (청주), 0.82 (전주), 0.62 (순천), 0.63 (진주), 0.78 (보성)로 높은 상관성을 보였다. 본 연구에서는 다중분위회귀 모형의 성능을 검증하기 위해 기존의 다중선형회귀모형의 결과와 비교하여 크게 개선됨을 나타냈다.

  • PDF

Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data (나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF

Estimation Of System Parameters With Arma Model (자기회귀-이중평균모델에 의한 시스템 파라미터 추정)

  • Hwang, Won-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 1991
  • 자기회귀-이동평균모델에 의하여 시스템의 파라미터를 추정할 수 있는 벡터채널 원형 격자 필터(vector channel circular lattice filter)의 알고리즘을 제시하였다. 이 알고리즘은 스칼라 연산만으로 이루어져 계산이 간단한 장점이 있다. 3자유도 시스템의 시뮬레이션 결과로부터 격자 필터의 성능을 검증하였으며, 1자유도 팔의 고유진동수와 감쇄비를 추정하였다.

  • PDF

프랜시스 골턴 다시 읽기

  • Jo, Jae-Geun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.113-116
    • /
    • 2005
  • 오늘날 대부분의 통계학 교과서에서 프랜시스 골턴(Francis Galton 1822-1911)은 비록 "회귀(regression)"라는 용어를 처음 사용한 인물이기는 하되, 그가 생각했던 "평균으로의 회귀(regression to the mean)"라는 것은 오늘날의 회귀분석과는 거리가 먼 것이라는 언급과 함께 짧게 소개된다. 이 글에서는 바로 그 골턴이 직접 쓴 것들을 다시 읽어보고 골턴 자신과 후세에 소개되는 골턴 사이의 거리를 살펴보려 한다. 그 결과 골턴은 통계학의 역사에서 여러 가지로 흥미로운 인물이므로 그의 이름이 통계학 교육 내용 중에 지금보다는 조금 더 등장해도 좋을 것으로 보인다.

  • PDF

Analysis of Geomorphological Characteristics of Gum River Basin using GIS (GIS 기법을 이용한 금강 유역의 지형학적 특성 분석)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.858-863
    • /
    • 2006
  • 본 연구에서는 금강유역을 대상으로 GIS기법에 의해 1:5,000 NGIS자료로부터 DEM과 하천망을 생성하였고, 이를 이용하여 하천차수별 하천수, 하천연장과 평균하천연장의 하천특성인자와 유역면적, 유역평균폭, 최원유로연장, 하천총수, 총하천연장, 수계밀도, 수계빈도, 형상인자, 평균표고, 평균경사, 최대하천차수, 유역내 최고표고, 기복비 등의 유역특성인자들을 추출함으로써 수자원단위지도 기반의 단위유역별 지형학적 특성을 파악하였다. 또한 대상유역을 금강권역상류, 금강권역중류, 금강권역하류유역으로 구분하여 지형학적 인자를 추출하고 그 특성을 분석하였으며, 선형 및 비선형 회귀곡선을 이용하여 인자들 간의 상관관계를 분석함으로써 각 유역을 특징짓는 주요 인자들을 추출하였다.

  • PDF

Derivation of Non-linear Regression Equations Between Air Temperature and Water Temperature Considering Domestic Watershed Properties (국내 유역 특성을 고려한 기온-수온 비선형 회귀식의 도출 및 적용성 평가)

  • Lee, Hyeon Gu;Lee, Gwanjae;Hong, Jiyeong;Yang, Dongseok;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.139-139
    • /
    • 2020
  • Intergovernmental Panel on Climate Change(IPCC)에 따르면 지난 1세기 반 동안 전 세계 평균 기온은 약 1℃가 상승하였으며, 온실가스 축적에 따라 평균기온은 21세기 중반에서 21세기 말까지 1~3℃가 증가할 것으로 전망되고 있다. 이러한 기온의 상승으로 인한 하천의 수온 변화는 수중에서 온도에 민감한 생화학적 반응의 변화를 유발하여 수질 및 수생태 변화에 영향을 미칠 수 있다. 따라서 효과적인 수질 및 수생태 관리를 위해서는 기온과 수온 사이의 명확한 관계 정립을 통해 수질변화를 정확하게 예측하는 것이 중요하다. 본 연구에서는 국내·외로 널리 활용되고 있는 SWAT(Soil and Water Assessment Tool, SWAT) 모형을 통해 기온-수온 회귀식이 하천 수질변화에 미치는 영향을 정량적으로 분석하고자 하였다. 그러나 기존 SWAT 모형에서의 기온-수온 회귀식은 미국 유역의 환경 특성을 바탕으로 도출되었기 때문에 국내 유역에 적용하기에 한계점이 있다. 따라서 본 연구의 목적은 국내 유역에서의 실측 기온자료와 수온자료를 사용하여 SWAT 모형 내 기온-수온 회귀식을 재도출하고 적용성을 평가하는 것이다.

  • PDF

A study on Speech Recognition Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 음성 인식에 관한 연구)

  • 박경훈;한학용;김수훈;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.153-156
    • /
    • 2000
  • 본문에서는 예측형 회귀신경망과 HMM의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용. 데이터에 대하여 Elman망예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 99.5%로 우수한 결과를 얻었다.

  • PDF

A Study on the Estimation Method of Hemoglobin Based on Linear and Multiple Regression Analysis Using Health Examination Big Data (건강검진 빅데이터를 이용한 선형 및 다중회귀분석 기반 헤모글로빈 추정 방법에 관한 연구)

  • Hong, Sang-Hoon;Hong, Kwang-Seok
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.553-555
    • /
    • 2021
  • 빈혈의 유병률은 매년 증가하고 있으나 이를 가벼운 질병으로 인식해 치료 시기를 놓치는 환자들이 존재한다. 빈혈의 발생원인으로 혈액 내 헤모글로빈 및 헤모글로빈 내 철 부족이 있으며, 헤모글로빈 측정기술의 경우 채혈 이외에 사람의 신체 및 건강 정보를 적용한 사례는 찾아보기 어렵다. 본 논문에서는 신체(키, 몸무게 및 허리둘레) 및 건강 정보(혈청지오티, 이완기 혈압 및 감마지티피 등)가 포함된 건강검진 빅데이터를 이용하여 단일 특징에 대해 선형회귀분석을 수행하고, 다중 특징에 대해 다중회귀분석을 수행하여 회귀분석 식을 산출, 산출된 회귀분석 식을 통해 헤모글로빈을 추정하여 실제 헤모글로빈값과 오차율을 계산하고 비교한다. 실험 결과, 선형회귀분석 식을 통해 헤모글로빈을 추정하였을 때 평균 8.124%의 오차율이 계산되었으며, 다중회귀분석의 경우 선형회귀분석보다 낮은 6.767%의 오차율이 계산되었다.

Nonparametric Detection of a Discontinuity Point in the Variance Function with the Second Moment Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.591-601
    • /
    • 2005
  • In this paper we consider detection of a discontinuity point in the variance function. When the mean function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better estimate the location of the discontinuity point with the mean function rather than the variance function. On the other hand, the variance function only has a discontinuity point. The target function in order to estimate the location can be used the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. We propose a nonparametric detection method of the discontinuity point with the second moment function. We give the asymptotic results of these estimators. Computer simulation demonstrates the improved performance of the method over the existing ones.

  • PDF

Improvement of Trip Generation Model in Seoul Metropolitan Area (수도권지역의 통행발생모형의 검증 (회귀모형과 카테고리모형을 중심으로))

  • Kim, Jin-Ja;Rhee, Jong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.49-58
    • /
    • 2004
  • The first and perhaps the most critical and perhaps the most important step in the process of predicting future traffic volume in a region (Zone) is to estimate the number of trips generated in from each traffic analysis zone. Most trip generation models for urban transportation planning, and highway in Korea are regression models. In Korea the category analysis has not been tried for last decades since the proper data such as the household travel behavior data have not been collected. Recently, the comprehensive household travel behavior survey such as ${\ulcorner}$1996 The Household Travel Behavior Survey${\lrcorner}$, ${\ulcorner}$2002 The Household Travel Behavior Survey${\lrcorner}$ has been done. In this paper, the cross-classification tables of Seoul Metropolitan Area including the City of Seoul and Kyonggi Province are estimated by the category analysis. The tables are compared with regression models and ${\ulcorner}$2002 The Household Travel Behavior Survey${\lrcorner}$ data in terms of predictive capabilities in Seoul Metropolitan Area. Improvement strategies for trip generation forecast in Seoul Metropolitan Area are proposed.