This study employs Bayesian multiple regression analysis using the ordinary least squares method for regional low flow frequency analysis. The parameter estimates using the Bayesian multiple regression analysis were compared to conventional analysis using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian analysis at each return period are not significantly different. However, the difference between upper and lower limits is remarkably reduced using the Bayesian multiple regression. Therefore, from the point of view of uncertainty analysis, Bayesian multiple regression analysis is more attractive than the conventional method based on a t-distribution because the low flow sample size at the site of interest is typically insufficient to perform low flow frequency analysis. Also, we performed low flow prediction, including confidence interval, at two ungauged catchments in the Nakdong River basin using the developed Bayesian multiple regression model. The Bayesian prediction proves effective to infer the low flow characteristic at the ungauged catchment.
Journal of the Korean Data and Information Science Society
/
v.27
no.4
/
pp.993-1000
/
2016
Semi-supervised learning makes it easy to use an unlabeled data in the supervised learning such as classification. Applying the semi-supervised learning on the regression analysis, we propose two methods for a better regression function estimation. The proposed methods have been assumed different marginal densities of independent variables and different smoothing parameters in unlabeled and labeled data. We shows that the overfitted pilot estimator should be used to achieve the fastest convergence rate and unlabeled data may help to improve the convergence rate with well estimated smoothing parameters. We also find the conditions of smoothing parameters to achieve optimal convergence rate.
This paper empirically examines whether firms engage in a dynamic adjustment process toward target capital structure and, whether there is a target capital structure or mean reverting using the partial adjustment model while allowing for costly adjustment. Also we investigate the empirical determinants of optimal target capital structure in long term equilibrium. As a result, our empirical model captures at least several important features of capital structure behavior for Korean listed firms. First, Korean firms pursue target capital structure and also there is mean reverting phenomenon. Second, Non-Chaebol and small firm in adjustment speed is faster than Chaebol and large firm. Third, even capital market restricts the adjustment speed interestingly. Fourth, Korean firms have target behavior according to a degree of observed gap. Fifth, Korean firms close about one-fourth of the gap between their actual and target debt ratios within one year and thence targeting behavior explains far more of the observed changes in capital structure than market timing or pecking order considerations. Sixth, capital market is significant in determining optimal capital structure.
This paper proposes a method to predict the number of foodborne disease outbreaks by microbes. The weekly data of food poisoning occurrences by microbes in Korea contain many zero-valued observations and have dependency between outbreaks. In order to model both phenomena, the number of food poisonings is predicted by an autoregressive model and the probabilities of food poisoning occurrences by microbes (given the total of food poisonings) are estimated by the baseline category logit model. The predicted number of foodborne disease outbreaks by a microbe is obtained by multiplying the predicted number of foodborne disease outbreaks and the estimated probability of the food poisoning by the corresponding microbe. The mean squared error and the mean absolute value error are evaluated to compare the performances of the proposed method and the zero-inflated model.
전력수요 예측은 설비투자, 수급 안정, 구매전력비 등에 직결되는 중요한 요소이며 국가 경제에 미치는 영향이 크다. 특히 인구가 밀집한 대도시의 경우 정치, 교육, 문화, 경제적 활동들이 전력사용과 밀접한 연관이 있어 안정적인 전력공급을 위한 정확한 전력수요 예측이 필요하다. 최근 평균기온 및 국내총생산을 독립변수로 활용하여 다중회귀모형을 구성한 연구가 전국 단위 전력수요 예측에 유용한 결과를 보여주었다. 하지만 좀 더 작은 단위 지역의 전력수요를 예측할 때에는 지역마다 제반 여건에 따른 전력사용 용도가 다르므로, 그 지역의 전력수요와 상관관계가 높은 다른 변수들을 함께 고려해야 할 필요가 있다. 본 논문은 서울시 자치구별 월 단위 전력수요 예측을 위하여 과거 전력수요량을 독립변수, 평균기온, 지역내총생산, 자치구별 인구, 세대수, 지하철 승 하차 인원을 종속변수로 설정한 다중회귀모형을 구성하였다. 이를 기반으로 다양한 실험을 통해 자치구별 월간 전력수요 예측을 진행하였으며, 그 결과 이전보다 향상된 정확도를 얻을 수 있었다.
Journal of the Korean Data and Information Science Society
/
v.9
no.1
/
pp.19-27
/
1998
We considered the bandwidth selection method which has asymptotic optimal convergence rate $n^{-1/2}$ in kernel regression function estimation. For the proposed bandwidth selection, we considered Mean Averaged Squared Error as a performance criterion and its Taylor expansion to the fourth order. Then we estimate the bandwidth which minimizes the estimated approximate value of MASE. Finally we show the relative convergence rate between optimal bandwidth and proposed bandwidth.
Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.5
/
pp.2096-2109
/
2012
This study investigates empirical issues that have received little attention in the previous research in the Korean capital market. It is to find any financial determinants on the capital structure for the firms listed in the KOSDAQ(Korea Securities Dealers Automated Quotation). Another test is performed to find any possible discriminating factors by utilizing a robust methodology, which may distinguish between the firms belonging the 'prime section' and the 'venture section' in terms of their financial aspects. Moreover, the null hypothesis that the changing trend or movement of a firm's capital structure with respect to its industry mean (or median) may be random, is also tested. For the book-value based debt ratios, size(INSIZE), growth(GROWTH), Market to book value of equity(MVBV), volatility(VOLATILITY), market value of equity (MVE) and section dummy (SECTION) showed their statistically significant effects on the book-value based leverage ratios, respectively, while size(INSIZE), growth(GROWTH), market value of equity(MVE), beta(BETA) and section dummy (SECTION) showed their statistically significant effects on the market-value based leverage ratios. This study also found an interesting result that a firm belonging to each corresponding industry has a tendency for reversion toward its mean and median leverage ratios over the five-year tested period.
Proceedings of the Korean Statistical Society Conference
/
2003.10a
/
pp.263-268
/
2003
Breiman, Friedman, Olshen and Stone(1984)의 전체탐색법에 의한 회귀나무는 상대적으로 많은 분리가 가능한 변수로 분리기준이 정해지는 편의 현상을 갖고 있다. 본 연구에서는 이런 문제점을 해결할 수 있는 알고리즘을 제안하여 변수선택편의가 없는 회귀나무를 만들고자 한다. 제안하는 알고리즘은 노드의 분리변수를 선택하는 단계와 그 선택된 변수에 의해 이진분리를 위한 분리점을 찾는 단계로 구성되어 있다. 예측변수 중에서 목표변수와 가장 밀접하게 연관된 예측변수는 예측변수의 자료의 종류에 따라 스피어만의 순위상관계수에 의한 검정 혹은 크루스칼-왈리스의 통계량에 의한 검정을 수행하여 가장 통계적으로 유의한 변수로 선택하였고, 선택된 변수에만 Breiman et al.(1984)의 전체선택법을 적용하여 분리점을 결정하였다. 모의실험을 통해 변수선택편의, 변수선택력 , 그리고 평균제곱오차 측면에서 Breiman et al. (1984)의 CART(Classification and Regression Trees)와 제안한 알고리즘을 서로 비교하였다. 또한, 두 알고리즘을 실제 자료에 적용하여 효율을 서로 비교하였다.
Proceedings of the Korea Society for Simulation Conference
/
1998.10a
/
pp.170-173
/
1998
본 연구에서는 시뮬레이터나 그와 유사한 가상현실환경(Virtual Reality Environment ; VRE)에서 일어날 수 있는 Simulator Sickness가 어떤 사람들에게 쉽게 발생하는지를 예측하기 위하여 다중선형회귀(Multiple linear regression) 방정식으로 예측회귀모형을 제시하였다. 이 회귀모형에서의 종속변수는 김도희 외(1998)에 의해 개발된 RSSQ의 종합점수이고, 독립변수는 실제운전경력에 1을 더한 값에 나이를 곱한 값, 과거 멀미를 경험한 정도, 1주일 평균 동화상 시간, 현재의 건강상태로 되어져 있다. 이 회귀모형의 R2값은 약 0.52로 Kolasinski(1996)의 모델보다 설명력이 18% 증가하였고, 부수적인 별도의 실험을 하지 않고도 간단한 개인 신상에 관한 간단한 자료만으로도 훨씬 좋은 결과를 예측할 수 있게 되었다. 따라서 시뮬레이터나 가상현실에서 일어나는 Simulator Sickness가 어떠한 사람에게 걸리기가 쉬운지를 쉽게 예측할 수 있게 되었고, 이러한 사람들에게는 시뮬레이터나 가상현실의 이용을 자제시키거나 주의를 주어 특별관리 함으로써 시뮬레이터나 가상현실을 운영하는데 많은 도움을 줄 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.