• Title/Summary/Keyword: 평균풍속비

Search Result 108, Processing Time 0.034 seconds

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

Effects of Ventilation Condition and Ventilating Hole Sizes to Improve Quality Onion(Allium cepu. L) under Room Temperature (양파 간이저장시 통풍조건 및 통풍구 재료의 크기가 저장에 미치는 영향)

  • 이찬중;김희대;정은호;김우일;서전규
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.356-361
    • /
    • 2001
  • This study was conducted to improve the storability of onion bulbs by assembly simple house storage and the reduce the rotteness caused by field open storage. Allium cepa cv. Changnyungdeago, late strain was used for the test at the storage condition of natural ventilation of levels 2, forced ventilation of levels 2, field open storage and 75mm, 100mm, and 125mm ventilating holes. Mean tamperature and relative humidity were not significantly different by ventilation conditions. Mean temperature was lower in forced ventilation than that of in natural ventilation and non-ventilation, and relative humidity was a little higher in ventilation treatment than those of the others. Weight loss of onion bulbs were 2.5%, 2.9%, 3%, 4.3% in field open storage, non ventilation, natural ventilation of levels 2 and forced ventilation of levels 2 respectively. Rotting rate in natural ventilation of levels 2 and farced ventilation of levels 2 were 27.7% and 25.4% respectively but 34.6% and 37.8% in non ventilation and field open storage. Therefore, the treatment of ventilation reduced the rotteness of storage onion bulbs. The smaller the size of a ventilating hole, the lower mean temperature was maintained. The relative humidity was some high in July, but didn’t showed significantly difference in August and September. With small size of a ventilating hole, the strong wind velocity was obtained, and wind velocity by position was weaker in the middle part than both ends. Rutting rates in 75㎜, 100㎜, and 125㎜ ventilating holes were 17.9%, 15.3% and 14.1% respectively.

  • PDF

The Effect of indoor illuminance depends on direction of the side windows lighting (측창채광의 방향에 따른 실내조도의 영향)

  • Cho, Shee-Man;Kim, Won-Joong;Jang, Woo-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.253-260
    • /
    • 2004
  • 실내의 조명은 자연채광방식과 인공조명으로 나누어지는데 자연형 채광방식에서도 측창채광과 천창채광, 정 측창채광 그리고 반사 채광방식이 있다. 측창채광은 벽면에 대하여 일반적으로 연직인 창에 의한 채광을 말한다. 측창채광의 방향에 따라 실내조도는 영향을 많이 받는다. 따라서 본 연구는 측창채광의 동서남북의 방향에 따라 봄, 여름, 가을, 겨울의 계절에 따라 아침, 점심, 저녁시간대에 따라 변화되는 실내조도를 알아보았다. 실험방법은, 조명시뮬레이션 프로그램인 Lightscape V3.2를 사용하여 교실공간의 치수와 작업면의 높이를 가로 5.8[m], 세로 10.8[m], 높이 3[m], 작업면의 높이 0.75[m]로 정하였고, 각 시설물의 반사율[p]은 벽 80%, 창문 12%, 출입문 13%, 바닥 20%, 천장 85%로 지정하였으며 창문의 투과율은 88%로 설정하였다. 본 연구에서 측정하고자 하는 변수 값은 계절은 여름을 6월20일, 겨울은 1월20일 기준으로 하고 시간대는 09시, 13시, 18시로 하였으며 창측방위는 동, 서, 남, 북으로 정하였으며 계절과 시간은 가장 차이가 많이 나는 값을 선택하였다. 결론으로 창이 남쪽일 때 평균조도가 9,100[lx]로 가장 높았고, 시간별로는 점심에 19,590[lx]로 조도가 가장 높은 것을 알 수 있었고 조도 균제도는 창이 동쪽일 때 겨울에 가장 높았다. 창이 북쪽일 때는 여름이 겨울보다 평균조도가 약간 높았고, 시간별로는 아침에 조도가 약간 높은 것을 알 수 있었고 전체적으로 북쪽 창에서 실내조도가 현저하게 떨어지는 것을 알 수 있었다. 이와 같은 결과로 측창의 브라인드를 현재 사용하고 있는 수직 브라인드 대신에 수평 브라인드를 사용하여 주광의 범위를 넓게 조절하여 사용하게 하고, 점등제어를 현재 측창면과 수직으로 되어있는 배열을 수평으로 한다면 자연채광의 효과를 배가 할 수 있으리라고 사료된다. 미백 전, 미백후, 재광화 후 미세경도 변화 양상이 미백을 하지 않은 대조군과 차이를 보이지 않았으며 (p > 0.05) 미백 전과 미백 후의 미세경도의 차이 미백후와 재광화 후의 미세경도의 차이도 유의할 만한 차이가 없었다 (p > 0.05). 따라서 시중에 판매되고 있는 whitening strip과 미백 젤은 14일 동안의 통상적인 미백과정 동안 법랑질의 미세경도에 영향을 미치지 않는 것으로 사료된다.able pitch와 helical angle보다는 근본적으로 radial land가 screw-in effect의 예방에 더 큰 역할을 하는 것으로 추정될 수 있다 따라서 NiTi file의 사용 경험이 없는 초심자의 경우 근단부 폭경의 유지능력이 좋은 ProFile$^{(R)}$의 사용이 추천된다.)되었다.였으나 강남콩군 외에는 단백질의 소화 흡수율 및 효율은 크게 향상되지 않아 단백질의 소화 흡수율을 떨어뜨리는 요인에 관한 연구가 집중적 으로 이루어져야 하리라고 생각된다.면 바로 위 지점의 풍속을 측정하였다. 각 Seeding 물질에 대해 팬을 켜지 않았을 때, 즉 바람의 영향이 없을 때 측정한 표면유속을 바람의 세기가 변한 경우의 기준 표면유속으로 이용하였다. 본 연구의 결과 비중이 0.01 내외인 Ecofoam과 white polystyrene에 비해 비중이 0.92인 black polypropylene은 대부분이 물속에 잠겨 있어 흐름과 거의 일치하여 움직임을 알 수 있었다. 또한 흐름의 평균유속이 0.165 m/s의 저유속에서 바람이 tracers에 미치는 영향이 평균유속 0.558m/s인 경우보다 커서, 바람의 세기의 증가에 따라 표면유속 측정값이 급속히 감소되었다. 흐름의 평균유속이 큰 경우에는 바람이 tracer에 마치는 영향이 현격히 줄어듬을 보이고 있다. 결론적으로 유속이 증가함에 따라 바람의 영향은 감소하나, 바

  • PDF

Mass Loss and Air Entrainment Rate of Whirl Fire by Height of Fire Source (화점높이 변화에 따른 Whirl Fire의 질량감소 및 공기유입속도)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.126-131
    • /
    • 2011
  • This study is intended to understand mass loss rate and air entrainment rate of the whirl fire by height of fire source. Liquid fuels were methanol and n-Heptane which are used in many studies of whirl fire. Size of vessel was 100 mm ${\times}$ 100 mm ${\times}$ 50 mm and the vessel was made by stainless steel. When height of fire source changed from 0 cm to 30 cm, air entrainment rate showed the fastest in case of 0 cm. And in the same height of fire source, average and maximum air entrainment rate showed the fastest in 30 cm of anemometer. From the results of whirl fire for methanol and n-Heptane, mass loss rate and air entrainment rate of n-Heptane was found to faster 1.33 to 1.58 times and 4.38 to 5.44 times compared with methanol, respectively. Consequently, mass loss rate and air entrainment rate in whirl fire was able to identified decrease as height of fire source increases and the higher the heating value, increases the that's value.

Beneficial Effect of Heat Fans on Quality and Yield of Korean Melon Cultivated in Greenhouses at Winter Season (히터팬 처리가 저온기 하우스 참외의 품질 및 수량에 미치는 긍정적 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Oh, Su Whan;Cheung, Joung Do;Sohn, Hyoung Rac;Do, Han Woo;Kim, Mi Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.188-193
    • /
    • 2017
  • The purpose of this study was to investigate the changes of environmental conditions and the quality and yield of melon fruit by heat fan operation in greenhouses at winter season. The average daily temperature inside the tunnels during January 1 to 31, 2017 was $0.9^{\circ}C$ higher than that of the control $17.8^{\circ}C$. The air flow rate of heater fan treatment was 4.8 times higher than the control (untreated $0.05m{\cdot}s^{-1}$) at 20cm above the ground where the korean melon grew. The temperature of the heater pan was $5.6^{\circ}C$ higher than that of the untreated at $35.3^{\circ}C$ and the relative humidity was 8.1% lower than that of the untreated at 39.1%. The flowering rate of the heater fan treatment was 96%, 5% higher than the control. The number of first harvest days of heater fan treatment was shortened by 4 days than that of untreated treatment. Fruit quality and marketable fruit yield increased by 3.4% and 38% compared to untreated respectively, the heater fan treatment increased the temperature inside the greenhouse and air flow rete, which were beneficial for growing the korean melon in greenhouses at winter season.

Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis (가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석)

  • Oh, Yurim;Kim, Jae Hwan;Park, Hyungmin;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.531-548
    • /
    • 2015
  • Atmospheric Motion Vector (AMV) from satellite images have shown Slow Speed Bias (SSB) in comparison with rawinsonde. The causes of SSB are originated from tracking, selection, and height assignment error, which is known to be the leading error. However, recent works have shown that height assignment error cannot be fully explained the cause of SSB. This paper attempts a new approach to examine the possibility of SSB reduction of COMS AMV by using a new target tracking algorithm. Tracking error can be caused by averaging of various wind patterns within a target and changing of cloud shape in searching process over time. To overcome this problem, Gaussian Mixture Model (GMM) has been adopted to extract the coldest cluster as target since the shape of such target is less subject to transformation. Then, an image filtering scheme is applied to weigh more on the selected coldest pixels than the other, which makes it easy to track the target. When AMV derived from our algorithm with sum of squared distance method and current COMS are compared with rawindsonde, our products show noticeable improvement over COMS products in mean wind speed by an increase of $2.7ms^{-1}$ and SSB reduction by 29%. However, the statistics regarding the bias show negative impact for mid/low level with our algorithm, and the number of vectors are reduced by 40% relative to COMS. Therefore, further study is required to improve accuracy for mid/low level winds and increase the number of AMV vectors.

A numerical study on effects of thermal buoyance force on number of jet fans for smoke control (도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • Jet fans are installed in road tunnels in order to maintain critical velocity when fire occurs. Generally the number of jet fans against fire are calculated by considering critical velocity and flow resistance by wall friction, vehicle drag force, thermal buoyance force and natural wind. In domestic case, thermal buoyance force is not considered in estimating the number of jet fans. So, in this study, we investigated the pressure loss due to the thermal buoyance force induced by tunnel air temperature rise and the impact of thermal buoyance force on the number of jet fans by the numerical fire simulation for the tunnel length(500, 750, 1000, 1500, 2000, 3500m) and grade (-1.0, -1.5, -2.0%). Considering the thermal buoyance force, number of jet fans have to be increased. Especially in the case of 100MW of heat release rate, the pressure loss due to thermal buoyance force exceed the maximum pressure loss due to vehicle drag resistance, so it is analyzed that number of 2~11 jet fans are needed additionally than current design criteria. Thus, in case of estimating the number of jet fans, it must be considered of thermal buoyance force induced tunnel air temperature rise by fire.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.

Oceanographic Conditions in Relation to Laver Production in Kwangyang Bay, Korea (광양만의 김 생산과 양식장환경과의 관계에 대하여)

  • HONG Jae-Sang;SONG Choon Bok;KIM Nam-Gil;KIM Jong Man;HUH Hyung Tack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.237-247
    • /
    • 1987
  • The present study deals with the physico-chemical and meteorological conditions in Porphyra-cultivation ground to determine the relationship between laver production and its environmental factors in Kwangyang Bay from January to April in 1986. As a result, major environmental factors which are thought to have a great influence upon the poor harvest during the cultivation period are as follows; 1) the excessive rainfall in the beginning of cultivation period 2) the accumulation of suspended matters on the thallus of laver 3) the decrease of current velocity and the stagnation of the water in the cultivation ground.

  • PDF