이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.
본 연구는 우리나라 주요 침엽수종인 일본잎갈나무와 리기다소나무의 생중량과 건중량 도출을 위한 최적 추정식 도출과 최적 중량식에 의한 중량표를 개발하기 위해 수행되었다. 중량표를 개발하기 위하여 전국에 분포하고 있는 일본잎갈나무 150본, 리기다소나무 90본, 전체 240본을 샘플링하여 현장에서 생중량을 측정하고, 각 부위별 시료를 채취하여 실험실에서 건중량을 측정하였다. 원목의 생중량과 건중량을 추정하기 위하여 이용한 식은 흉고직경의 1변수식, 그리고 흉고직경과 수고를 이용하는 2변수식으로 구분하였다. 또한 생중량 및 건중량 추정식들에 대해 적합성 검증을 위하여 적합도지수(FI), 평균제곱근오차(RMSE), 추정표준오차(SEE), 잔차도 등의 통계량을 이용하였으며, 도출된 최적식에 의해 중량을 계산하여 적용성을 검토하였다. 이 결과 흉고직경만을 이용할 때 W = bD+cD2 그리고 흉고직경과 수고를 이용할 때 W = aDbHc가 선정되었다. 선택된 1변수 중량추정식 W = bD+cD2의 적합도지수는 0.91였으며, 2변수 중량추정식 식 W = aDbHc의 적합도지수는 0.95로 모두 높게 나타났다. 이들 추정식으로 일본잎갈나무와 리기다소나무에 대한 생중량 및 건중량표를 새롭게 작성하였으며, 20년전의 중량표와 비교할 때 두 수종 모두 생중량 및 건중량이 기존 중량표가 큰 것으로 나타났다.
본 연구의 목적은 우리나라 추풍령 기상관측소에서 연직바람관측장비와 레윈존데 간 풍속 자료의 유효화를 통해 연직바람관측장비의 운영 프로그램인 PCL 1300 내 일관성 검사와 관련된 매개변수를 최적화하는 것이다. 그런 다음 2009년 3월부터 2010년 2월까지 맑은 날과 강수 발생일에 대한 난류 에너지 감소률의 특성(${\varepsilon}$)을 분석하는 것이다. 2010년 4월 22일부터 4월 23일까지 레윈존데와 연직바람관측장비의 바람 관측 자료를 비교한 결과, 동서(u) 성분과 남북(v) 성분의 바람에서 고도 3,000 m 이후에서 $10ms^{-1}$ 이상의 큰 차이를 나타내었다. 두 기기 사이 u 성분과 v 성분의 바람에 대한 풍속 차가 $10ms^{-1}$를 넘는 경우를 제외할 경우 두 바람 성분에 대한 상관계수는 각각 0.92와 0.88이었고, 제곱근 평균 오차는 각각 $3.07ms^{-1}$과 $1.06ms^{-1}$이었다. 이들 결과에 준하여 PCL1300 프로그램의 자료 처리 시간을 30분으로 조정하고, 최소 이용 자료는 전체의 60%로 조정할 경우가 비교적 작은 편의를 나타내었다. 한편 PCL1300 운영프로그램에서 u, v 성분의 일관성 검사에 대한 민감도 분석 결과, 시선속도 일관성, 동시성, 풍속 일관성 검사에서 u 성분에 대해서는 과소평가 되었고, 반면 v 성분에 대해서는 과대평가 되었다. 최종적으로 PCL1300 운영 프로그램의 최적화를 통해 맑은 날과 강수 발생일의 난류 에너지 감소률(${\varepsilon}$)을 분석한 결과, 각 고도에서 ${\varepsilon}$의 일별 및 계절별 평균은 강수 발생일이 맑은 날에 비해 높게 나타났는데, 이는 상승하강 기류에 따른 연직속도가 증가하였기 때문이다. 그리고 맑은 날과 강수 발생일 모두 계절별 ${\varepsilon}$ 평균은 겨울이 낮게 나타났는데, 이는 겨울이 다른 계절에 비해 수평 풍속이 강했기 때문이다. 결과적으로 연직속도가 ${\pm}10cm\;s^{-1}$ 이상에 해당하는 맑은 날과 강수 발생일의 ${\varepsilon}$ 값을 제외할 경우 강수발생일은 맑은 날에 비해 약 6-7배 ${\varepsilon}$이 높게 나타났으며, 연직속도를 모두 고려할 경우는 약 4-5배 더 높게 나타났다.
이 연구의 목적은 2008년 5월 29일 우리나라에 영향을 미치는 황사를 예측하기 위해 WRF-Chem 모델 내 에어로졸 스킴과 광물성 먼지 옵션에 따른 미세먼지 농도 변화와 그에 따른 기상장의 민감도를 분석하는 것이다. 미세먼지의 인위적 배출량에 대해서는 $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO 전구 배출량을, 광해리의 경우 Fast-J 광해리 스킴을, 그리고 황사 발생량을 추정하기 위해 RADM2 화학메커니즘 및 MADE/SORGAM 에어로졸 시나리오, MOSAIC 8 섹션 에어로졸 시나리오, 그리고 GOCART 먼지 침식 시나리오를 각각 적용하였다. 그 결과 RADM2 화학메커니즘 및 MADE/SORGAM 에어로졸 시나리오가 다른 시나리오들보다 우리나라 황사 먼지 농도와 배경 PM 농도를 더 높게 모사하였다. 그리고 이 시나리오와 서울의 각 대기질 측정망의 평균 PM10 농도와의 비교 결과, 상관계수는 0.67, 평균제곱근오차는 $44{\mu}gm^{-3}$으로 나타났다. 또한 WRF-Chem 모델에서 상기 3가지 시나리오와 이들 시나리오가 없는 순수 기상에서의 온도, 풍속, 경계층 높이, 장파복사의 기상 민감도를 분석한 결과, 1,800-3,000 m 경계층 높이와 $2-16ms^{-1}$ 풍속 U 성분의 공간적 분포가 황사 먼지 발생의 공간적 분포와 유사하게 나타났다. 그리고 GOCART 먼지 침식 시나리오와 RADM2 화학메커니즘 및 MADE/SORGAM 에어로졸 시나리오는 황사 먼지 또는 에어로졸과 기상이 온라인으로 상호작용함으로써 지구장파복사가 더 낮게 모사되었다.
본 연구에서는 위성관측 표면온도 및 해당 온도경향의 불확실성을 조사하기 위하여 북반구($30-90^{\circ}N$) 해양 지역에서 2003-2014년 4월 16-24일 기간에 세 종류의 위성관측 자료(MODIS IST, AIRS/AMSU SST, AIRS only SST)를 상호 비교하였다. AIRS/AMSU 표면온도값에 비하여 MODIS는 해빙과 해수의 경계지역에서 계통적으로 최대 1.6 K 높은 반면에, 해빙 지역에서는 2 K 낮았다. 이러한 주요 원인은 표면온도 산출알고리즘의 해표 정보(e.g., 해빙 탐지)를 위하여 MODIS는 적외 채널만을 사용하는 반면에, AIRS/AMSU는 마이크로파 및 적외 채널을 함께 사용하는 데에 있다. 미국 항공우주국(NASA's Goddard Space Flight Center; NASA/GSFC)은 AMSU-A의 노후화를 대비하기 위하여 AIRS/AMSU 알고리즘을 일부 수정하여 AIRS only 알고리즘을 개발하였다. AIRS/AMSU와 AIRS only 표면온도 사이에 평균 제곱근 오차(RMSE)값은 $30-90^{\circ}N$ 해양 지역에서 0.55 K이며, 편차(bias)는 0.13 K이었으며, 해빙/해수 경계 지역에서는 이들 차이가 더 크게 나타났다. 해빙 경계지역에서 AIRS/AMSU와 AIRS only 간의 차이가 다른 지역에 비하여 큰 이유는 AIRS only 알고리즘이 AMSU 마이크로파 자료 대신에 GCM (NOAA Global Forecast System) 온도 산출물을 사용하는 데에 있다. 세 종류의 위성관측 표면온도 자료는 $70-80^{\circ}N$ 위도대에서 유의적인 온도증가($0.23-0.28Kyr^{-1}$)를 보였다. 위성관측 표면온도들 간에 계통적인 불일치는 같은 방향(온도증가 또는 온도감소)으로 해당 온도경향 값들 간의 차이에 영향을 줄 수 있다.
본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.
2차원 유속장(flow field)은 하천흐름의 특성을 이해하기 위한 중요한 수리학적 자료 중 하나로서, 수공구조물 위치선정 및 설계, 하천에서의 이송-확산 예측, 하천의 수리학적 거동을 예측하기 위한 중요한 기본 자료로 사용된다. 지금까지 이러한 하천흐름 특성을 예측하기 위해 제한적인 현장조건과 적절한 계측방법, 계측기기의 기술적 한계로 인해 현장실험 보다는 다양한 수치모형을 이용하여 왔다. 하지만 최근에는 계측기기의 발달로 과거보다 정확하고 정밀한 현장계측이 가능하여 졌으며, 현장 계측자료의 질적이고 양적인 수요를 만족시키고 있다. 대표적으로 초음파도플러유속계(ADCPs; Acoustic Doppler Current Profilers)는 유량을 정확하게 측정하는 것으로 유명하며, 2차원 뿐만 아니라 3차원 유속장 등 자세한 유속자료를 제공한다. 하지만 이러한 측정 능력에도 불구하고, ADCP를 활용한 유속 측정은 주로 횡단면 측정을 기본으로 수행하기 때문에, 수치모형의 결과와 같이 높은 밀도의 유속장을 얻기 위해서 공간보간기법이 활용되고 있다. 하지만 만곡이 존재하는 자연하천은 하도형상에 따라 유속이 지속적으로 변화하기 때문에 일반적인 공간보간기법을 적용하기 어렵다. 즉, 자연하천의 만곡에 따른 비등방성을 고려하지 않는다면, 역거리가중법(IDW)과 크리깅(Kriging)과 같은 일반적인 공간보간기법으로는 잘못된 결과를 초래할 수 있다. 본 연구에서는 이러한 문제점을 해결하고자 만곡이 존재하는 사행하천을 대상으로 방향성을 고려하기 위한 곡선좌표계와 비등방성을 고려하기 위한 비등방적 참조범위를 적용한 공간보간기법을 개발하였다. 본 연구에서 제시한 기법을 한국건설기술연구원 하천실험센터에 존재하는 3개의 사행수로가 포함된 실규모의 실험수로를 대상으로 적용한 결과, 평균제곱근오차와 상관계수는 기존의 공간보간기법과 비교하여 각각 41.5% 감소, 40.0%가 증가하여 정확성과 상관성이 개선되었다.
수공구조물의 설계홍수량 산정은 일반적으로 유출자료의 통계적 분석을 통해 산정된다. 하지만 자료의 부족으로 통계적인 방법을 이용하기 힘든 경우 이에 대한 대안으로 주로 강우-유출모형이 이용되고 있으며, 이 중 유출모형은 합성단위도법이 많이 이용되고 있다. 이러한 합성단위도 방법 중 국내에서는 Nakayasu 방법, Snyder 방법, SCS 방법, HYMO 방법 등이 주로 이용되거나 제안되었으며, 본 연구에서는 이러한 기존 방법들과 최근 개발된 건기연의 합성단위도법을 총 10개 유역의 지점 대표단위도와 비교 검토함으로써 국내 수문특성에 가장 적합한 방법을 결정해보고자 하였다. 먼저 지점 대표단위도와 각 방법으로부터 합성된 단위도의 첨두유량 및 첨두시간을 비교하였으며, 평균제곱근오차의 산정과 비교를 통해 단위도의 형상을 비교하였다. 그 결과, 일본에서 개발된 Nakayasu 방법은 단위도의 첨두유량, 첨두시간과 단위도의 형상에서 실제와 매우 다른 왜곡된 결과를 나타내고 있었으며, 나머지 방법들은 지점에 따라 차이는 있으나 전반적으로 건기연(2000)의 방법이 실제 대표단위도에 가장 근접한 결과를 주고 있었다. 또한, 합성단위도 개발에 이용된 자료, 지점 및 유역특성 등을 조사한 결과, 과거의 성과를 함께 이용한 건기연의 방법이 가장 포괄적임을 알 수 있었다. 따라서 수문실무에서 합성단위도법을 적용할 경 우, Nakayasu 방법을 이용하여 설계홍수량을 추정하는 방법은 지양되어야 할 것으로 보여지며, 건기연의 방법을 이용하는 것이 가장 적절한 결과를 줄 것으로 판단할 수 있었다. 하지만 만약 SCS나 Nakayasu 방법을 적용한다 할 지라도 국내 자료를 통해 해당 모형의 매개변수나 회귀적 등을 조정하여 이용한다면 보다 적절한 결과를 얻을 수 있을 것으로 생각된다.다. 재생 $Al_2$O$_3$시편의 치밀화를 위하여 5~20wt%의 폐유리분말을 첨가하여 1200~1$650^{\circ}C$에서 5시간 소결한 시편은 폐유리분말의 첨가량이 증가함에 따라 최대 밀도와 3점곡강도를 나타내는 온도는 감소하였으나, 140$0^{\circ}C$이상에서는 페유리분말을 첨가하지 않은 시편에 비하여 밀도와 3점곡강도가 감소하여 재생 $Al_2$O$_3$세라믹스의 소결성 향상에는 기여하지 못하였다.TEX>$_{0}$=32900 GHz, $\tau$$_{f}$ =-2.2 ppm/$^{\circ}C$이었다. B$_2$O$_3$첨가의 경우 최적의 첨가량은 1.0~2.5 wt%이었으며 8$50^{\circ}C$에서 소결한 경우 얻어진 유전특성은 $\varepsilon$$_{r}$20.3~22.1, Q$\times$f$_{0}$=48700~54700 GHz, $\tau$$_{f}$ =+2.4~+8.2ppm/$^{\circ}C$이었다.describe the desired urban resort nature of the stadium. From this historical perspective it seems that stadiums have great potential as urban resorts. The factor that will determine their success is
2010년 11월 11-13일 한반도에 영향을 미쳤던 황사에 대해 WRF-Chem 모델을 이용하여 시뮬레이션 하였다. WRF-Chem 모델에서 미세먼지의 인위적 배출량은 RETRO 전구 배출량을 사용하였고, RADM2 화학 메커니즘과 MADE/SORGAM 에어로졸 스킴 및 GOCART 광물성 먼지 옵션을, 그리고 Fast-J 광해리 스킴을 선택하여 $PM_{10}$ 농도를 시뮬레이션 하였는데 연구 결과를 요약하면 다음과 같다. WRF-Chem 모델 결과에 따른 $PM_{10}$ 농도의 공간적 분포와 연직 프로파일 분석결과 2010년 11월 11-13일에 우리나라에 영향을 미쳤던 황사는 강한 가을황사로 저기압의 발달로 인해 형성된 콤마구름 때문에 황사가 한랭전선 후면에서 갇혀 상공 2.5 km 이내에서 이동 및 유입됨을 알 수 있었다. 황사 발생 기간 동안 백령도와 서울의 기상청 관측 자료와 모델의 $PM_{10}$ 농도를 시계열로 분석한 결과 상관계수와 평균제곱근오차(RMSE)는 백령도의 경우 0.763과 $192.73{\mu}g/m^3$, 서울의 경우 0.725와 $149.68{\mu}g/m^3$로 나타났다. 미세먼지인 $PM_{10}$과 $PM_{2.5}$ 농도의 공간적 분포는 유사하였고 $PM_{2.5}$가 $PM_{10}$의 약 50% 정도로 나타났으며 이는 기상청 UM-ADAM 모델 결과와도 유사하였다. $PM_{10}$ 농도와 경계층 높이, 동서 성분 바람장의 공간적 분포는 유사성을 지니고 있어 두 개의 변수를 이용하여 $PM_{10}$의 농도를 예측하는 회귀 방정식을 구하고자 우리나라에 영향을 미쳤던 강한 가을 황사(2010년 11월 11-13일)와 봄 황사(2011년 3월 19-20일) 사례를 선정하였고, 통계 모델을 이용한 회귀식을 도출하였다.
본 연구에서는 한반도 황사 사례 동안 WRF 기상모델과 SMOKE 배출량모델, CMAQ 및 CMAQ-MADRID 대기질 모델을 이용하여 다양한 황사 발생량 경험식에 대한 $PM_{10}$의 농도를 추정하였다. 특별히 Wang et al.(2000), US EPA 모델, Park and In(2003), GOCART 모델, DEAD 모델의 5가지 황사 발생 경험식이 중국과 몽골 등의 황사 발생량을 추정하기 위해 WRF-SMOKE-CMAQ(MADRID) 모델에 적용되었다. 일기도, 후방궤적 및 위성이미지 분석에 따르면 한반도로의 황사 수송은 절리저기압(위성에서 콤마형 구름)과 관련된 지상 전선의 뒤쪽에서, 그리고 상층 제트류의 발달에 기인한 파의 정체현상과 함께 상층 골에서의 풍속이 하층으로 전이되는 풍하 바람에 의해 생성되었다. 그리고 WRF-SMOKE-CMAQ 모델링 결과, 황사의 시 공간적 분포에 있어서는 Wang et al.(2000)의 경험식이, 평균 편의 및 평균 제곱근 오차에서의 정확도 부분에서는 GOCART 모델의 경험식이 관측값을 보다 잘 모사하는 것으로 나타났다. 또한 Wang et al.의 경험식을 이용한 황사의 연직분포 분석 결과에서 강한 황사 사례(2007년 3월 31에서 4월 1일 $800\;{\mu}g/m^3$ 이상)의 경우는 황사 수송이 한반도 상공 대기 경계층 내를 통과하였기 때문으로, 약한 황사 사례(2009년 3월 16일과 17에 $400\;{\mu}g/m^3$ 이하)의 경우는 황사 수송이 경계층 위를 통과하였기 때문으로 나타났다. 또한 CMAQ 모델과 CAMQ-MADRID 모델에서의 미세먼지($PM_{10}$) 민감도 분석 결과에서는 CMAQ-MADRID 모델이 CMAQ 모델에 비해 한반도를 포함한 동아시아 지역에서 최대 $25\;{\mu}g/m^3$ 정도가 높게 모사되었고, 모델 내 구름 액상과정에 의해서는 최대 $15\;{\mu}g/m^3$ 정도가 제거되는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.