TBM의 활용이 증가하면서 최근 국내외에서 머신러닝 기법으로 TBM 데이터를 분석하여 디스크커터의 교환주기 예측 및 굴진율을 예측하는 연구가 증가하고 있다. 본 연구에서는 굴진 시 획득되는 기계 데이터와 지반 데이터를 기반으로 최근에 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들 중 회귀 모델을 접목하여 슬러리 쉴드 TBM 현장의 디스크 커터 마모 예측을 하였다. 디스크 커터 마모 예측을 위해서 Training과 Test 데이터를 7:3으로 분할하였으며, 최적의 파라미터를 선정을 위해서 분할 교차검증을 포함하는 그리드 서치를 활용하였다. 그 결과, 앙상블 계열의 그레디언트 부스팅 모델이 결정계수가 0.852, 평균 제곱근 오차가 3.111로 좋은 성능을 보여주었고 특히 학습성능과 더불어 학습속도에서 우수한 결과를 보여주었다. 현재 도출된 결과로 볼 때, 슬러리 쉴드 TBM의 기계데이터와 지반정보가 포함된 데이터를 활용한 디스크 커터 마모 예측 모델의 적합성은 높다고 보인다. 추가적으로 지반조건의 다양성과 디스크 마모 측정 데이터양을 늘리는 연구가 필요한 것으로 판단된다.
시설 내 작물이 이용하는 수광특성의 이해와 지속적으로 변화하는 광환경의 추적은 광합성과 증산반응 연구에서 중요하다. 또한 재배기간 동안 작물이 생장함에 따라 광이용 형태가 지속적으로 변화한다. 따라서 본 연구에서는 작물의 생육을 반영한 흡광계수 추정 모델을 개발하였다. 흡광계수의 측정을 위하여 작물의 높이에 따라 수직으로 일사량계를 5개 설치하였으며, 작물의 전 생육기간(1-85DAT) 동안 1초 단위로 측정을 하였다. 초기, 중기, 후기 각각의 생육단계에 따라 최상단 광량과 최하단의 광량의 차이가 69%, 72%, 81%로 증가하는 경향을 보였다. LAI와 초장이 증가함에 따라 흡광계수는 감소하였으며, 지수적 감소 관계를 보였다. 두 생육지표를 모두 반영한 3차원 모델에서는 Paraboloid 식이 평균 제곱근 오차(RMSE)가 1.340으로 가장 낮았고, 결정계수(R2)는 0.968로 가장 높았다. 본 연구를 통하여 작물 재배기간 동안 보다 정확한 흡광계수를 예측할 수 있게 되었고, 이는 작물의 높이에 따른 광합성 및 증산량 예측과 분석 연구에 활용될 수 있을 것으로 판단된다.
2020년 하반기부터 2021년 초까지 발생한 조류인플루엔자의 여파로 1,780만수의 산란계가 살처분되면서 계란 공급 부족으로 계란 1판에 1만원을 넘는 사태가 벌어지기도 했다. 이에 정부는 물가 안정 대책으로 1,000억원 이상의 국고를 계란 수입에 투입하였지만, 계란 가격의 안정화는 쉽지 않았다. 계란 가격의 급격한 변동성은 소비자와 양계농가 모두에게 부정적인 영향을 미치므로 계란 가격의 안정화 방안을 위한 대책이 필요하다. 이를 위해 본 연구에서는 머신러닝 회귀분석 알고리즘을 활용하여 계란 가격을 예측하였으며, 가격 예측을 위해서 대한양계협회 2012~2021년도의 월간 산란계 생산통계와 국가통계포털(KOSIS)의 도축실적 등 총 8개의 독립변수를 선택하였다. 실제 가격과 모델에 의한 예측 가격의 차이를 나타내는 평균 제곱근 오차(RMSE)는 약 103원이며, 이는 개발된 모델이 계란 가격을 비교적 잘 예측한 결과라고 판단된다. 정확한 계란 가격 예측은 산란계 계란 생산주령의 유연한 조정과 산란계 입식에 대한 의사결정을 도울 수 있고, 계란 가격 안정성 확보에 도움을 줄 것으로 보인다.
생존 자료에서 Hade 등 (2020) 은 시간-의존 교란 변수가 환자의 처치 시점에 영향을 미칠 때, 해당 효과를 보정하여 treatment delay effect를 올바르게 추정하기 위해 성향 점수 매칭 방법을 이용하였다. 이 때, treatment delay effect란 환자가 관심 있는 지연 시점만큼 늦게 처치를 받는 경우 제 때 받는 경우에 비해 사건 발생 위험에 미치는 영향을 의미한다. 본 연구에서는 또 다른 성향 점수 기반 모형인 Cox-MSM 모형 또한 해당 효과를 올바르게 추정할 수 있는지 모의 실험을 통해 확인 및 기존 매칭 모형과 비교하였다. 모의실험 결과, 세 가지 모형 모두 다양한 시나리오 내에서 treatment delay effect를 올바르게 추정함을 확인하였다. 특히 모든 시나리오 내에서 Cox-MSM의 제곱근평균제곱오차의 값이 가장 낮았으며, restricted Cox matching 모형에서 가장 큰 값을 가지는 것으로 나타났다. 결론적으로, 성향 점수에 기반하나 매칭이 아닌 방법 또한 treatment delay effect 적용이 가능하다는 결과를 제공한다. 추후 G-formula과 같이 성향 점수 기반이 아닌 모형에서도 적용이 가능한지에 대한 상세 연구가 필요하다고 사료된다.
대부분의 임상시험에서 가장 대표적으로 사용되는 실험설계는 무작위화로, 치료 효과를 정확하게 추정하기 위해 이용된다. 그러나 무작위화가 이루어지지 않은 관찰연구의 경우 치료군과 대조군의 비교로 얻는 치료효과에는 환자 간의 특성 등 여러 조정되지 않은 차이로 인해 편향이 발생한다. 성향 점수 가중치는 이러한 문제점을 해결하기 위해 널리쓰이는 방법으로 치료 효과를 추정하는데에 있어 교란요인을 조정하여 편향을 최소화하도록 하는 방법이다. 성향 점수를 이용한 가중치 방법 중 가장 널리 알려진 역확률 가중치는 관찰된 공변량이 주어졌을 때 특정 치료에 할당될 조건부 확률의 역에 비례하는 가중치를 할당한다. 그러나 이 방법은 극단적인 성향 점수에 의해 종종 방해 받아 편향된 추정치와 과도한 분산을 초래한다는 점이 알려져있어 이러한 문제를 완화하기 위해 절사 역확률 가중치, 중복 가중치, 일치 가중치를 포함한 여러 가지 대안 방법이 제안되었다. 본 논문에서는 제한된 중복, 잘못 지정된 성향 점수 모델 및 예측과 반대되는 치료 등 다양한 문제상황에서 여러 성향 점수 가중치 방법의 성능을 비교하는 시뮬레이션 비교연구를 수행하였다. 비교연구의 결과 중복 가중치와 일치 가중치는 편향, 제곱근평균제곱오차 및 포함 확률 측면에서 역확률 가중치와 절사역확률 가중치에 비에 우월한 성능을 보임을 확인하였다.
본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.
본 연구에서는 서울지역의 지상 미세먼지($PM_{2.5}$) 농도를 산출하기 위하여 경험적인 모델들을 개발하였다. 연구에 이용한 자료는 2012년 1월 1일부터 2013년 12월 31일까지이며 Terra와 Aqua위성의 MODIS센서에서 산출되는 에어로졸 광학두께, 옹스트롬 지수, 기상변수들과 행성경계층두께와 관련된 6개의 다중 선형 회귀모델들의 차이를 분석하였다. 그 결과 에어로졸 광학두께와 옹스트롬 지수, 상대습도, 풍속, 풍향, 행성경계층두께, 기온 자료를 입력 자료로 사용한 $M_6$모델이 가장 좋은 결과를 보였다. 통계적인 분석에 따르면 $M_6$ 모델을 사용하여 계산된 $PM_{2.5}$와 관측된 $PM_{2.5}$농도 사이의 결과는 상관계수(R=0.62)와 평균제곱근오차($RMSE=10.70{\mu}gm^{-3}$)이다. 또한 산출된 계절별 지표면 $PM_{2.5}$농도는 여름철(R=0.38)과 겨울철(R=0.56)보다 봄(R=0.66)과 가을철(R=0.75)에 상대적으로 더 좋은 상관 관계를 보였다. 이러한 결과는 에어로졸 광학두께의 계절별 관측 특성으로 인한 것으로써 다른 계절에 비하여 여름과 겨울철 에어로졸 광학두께 관측이 구름과 눈/얼음 표면에 의한 관측 제한과 오차를 가져온 것으로 분석되었다. 따라서 본 연구에서 사용한 경험적 다중선형회귀 모델은 위성에서 산출된 에어로졸 광학두께 자료가 지배적인 변수로 작용하며 $PM_{2.5}$산출 결과들을 향상시키기 위해서는 추가적인 기상 변수를 이용해야 할 것이다. 또한 경험적 다중선형회귀 모델을 이용하여 $PM_{2.5}$를 산출한 결과는 인공위성 자료로부터 대기환경 감시를 가능하게 하는 방법이 될 수 있어 유용할 것이다.
동해 표층 해수에서 측정한 이산화탄소 분압($pCO_2$)에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층$pCO_2$자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{\mu}atm$으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{\circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{\circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{\mu}atm$이었다. 신경망 모델이 울릉분지의 $pCO_2$에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.
고압나트륨등(high-pressure sodium, HPS 램프)은 작물 생육 발달에 필요한 충분한 양의 광합성유효방사를 제공하는 동시에 복사열을 통해 온실 난방 부하를 절감할 수 있어 겨울철 시설원예 보광 조명으로 널리 이용되고 있다. 그러나 겨울철에 생육 중기를 맞이하는 시설 과채류의 경우, 작물의 정단부가 복사열에 영향을 많이 받고, 캐노피 위치에 따라 엽온 차이가 증가될 수 있다. 또한 온실 기온 역시 보광등에서 발생한 열이 상부로 상승 및 정체되면서 불필요한 에너지 낭비 및 온도 불균일성 역시 심화될 수 있다. 따라서 본 연구의 목표는 CFD 열전달 해석을 통해 HPS 램프에 의한 열적 특성 및 생육 단계별 수평적 엽온 변화를 분석하고, 온실 내 수직적 기온 및 작물의 캐노피별 엽온을 측정하여, 온실 내 환경 균일성 제고 및 효과적 에너지 활용 방안을 모색하는 것이었다. 생육 초기, 중기, 및 후기를 대변하는 초장(1.0, 1.6, 2.2m)에서의 정단부 수평적 엽온을 CFD 시뮬레이션을 통해 분석하였다. 또한 HPS 램프 작동 이후 수직적 기온과 캐노피 높이별 엽온을 측정하였다. 실험 결과, 보광 시 엽온과 기온 간의 차이가 커지고, 수직적 기온 역시 불균일해짐을 알 수 있었다. 생육 단계가 진전될수록, 고온의 복사열이 중심부에 집중되며, 상단부 수평적 엽온 편차가 커지고, 균일성 역시 떨어지는 것을 알 수 있었다. 열획득 모델을 통한 수치해석 결과, 보광등이 2022년12월 기간 난방부하에 약 50.1% 기여하는 것을 알 수 있었다. 평균절대오차 및 평균제곱근 오차는 생육 초기 및 생육 중기 모두0.5 이하로, 실측값과 예측값에 높은 일치도를 보였다. 수직적 기온 및 엽온 분포와 생육 단계별 수평적 엽온 분포에 관한 본 연구의 결과는 효율적 에너지 관리 및 작물 생육 발달에 관한 의사결정에 도움이 될 수 있을 것으로 생각된다.
본 연구는 CT 촬영 시 금속으로 인해 발생한 금속 인공물 감소를 위한 알고리즘 적용에 따른 영상 화질에 대한 정량적 비교를 하고자 한다. Spectral detected-based CT와 CT ACR 464 팬톰을 이용하여 일반적인 필터보정역투영 알고리즘을 적용한 기준 영상을 10장 획득하고, 동일 팬톰에 금속 인공물을 발생시켜 일반적인 필터보정역투영 알고리즘을 적용한 영상을 10장 획득하였다. 금속 인공물을 발생시켜 획득한 영상의 원시 데이터에 metal artifact reduction 알고리즘, 가상 단일 에너지 알고리즘, metal artifact reduction 알고리즘 적용 후 추가로 가상 단일 에너지 알고리즘을 적용한 영상을 각각 10장씩 획득하였다. 알고리즘 적용에 따른 hounsfield unit 비교를 위해 CT ACR 464 팬톰 module 1에 위치한 폴리에틸렌, 뼈, 아크릴, 공기, 물에 관심영역을 설정하고, 전체 영상 화질 평가를 위해 평균 제곱근 오차, 평균 절대 오차, 신호 대 잡음비, 최대 신호 대 잡음비, 구조적 유사도 지수 지표를 통해 알고리즘 별 비교하였다. 알고리즘 적용 영상 별 hounsfield unit 비교 결과 알고리즘 적용 영상 간 유의한 차이를 보였으며(p < .05), 아크릴을 제외한 관심영역에서 가상 단일 에너지 알고리즘 적용 영상에서 큰 변화를 나타냈다. 영상 화질 평가 지표 결과 metal artifact reduction 알고리즘 적용 영상 화질이 가장 높았으나, 구조적 유사도 지수는 metal artifact reduction 알고리즘 적용 후 추가로 가상 단일 에너지 알고리즘이 동시에 적용된 영상이 가장 높았다. CT 촬영 시 금속 인공물 감소에 metal artifact reduction 알고리즘이 가상 단일 에너지 알고리즘에 비해 효과적이었지만, 양질의 CT 영상 획득을 위해 알고리즘 적용에 따른 이점과 영상 화질 변화를 파악하고 효율적인 활용이 필요하다고 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.