• Title/Summary/Keyword: 평균제곱근오차

검색결과 358건 처리시간 0.031초

TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구 (A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm)

  • 강태호;최순욱;이철호;장수호
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.502-517
    • /
    • 2022
  • TBM의 활용이 증가하면서 최근 국내외에서 머신러닝 기법으로 TBM 데이터를 분석하여 디스크커터의 교환주기 예측 및 굴진율을 예측하는 연구가 증가하고 있다. 본 연구에서는 굴진 시 획득되는 기계 데이터와 지반 데이터를 기반으로 최근에 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들 중 회귀 모델을 접목하여 슬러리 쉴드 TBM 현장의 디스크 커터 마모 예측을 하였다. 디스크 커터 마모 예측을 위해서 Training과 Test 데이터를 7:3으로 분할하였으며, 최적의 파라미터를 선정을 위해서 분할 교차검증을 포함하는 그리드 서치를 활용하였다. 그 결과, 앙상블 계열의 그레디언트 부스팅 모델이 결정계수가 0.852, 평균 제곱근 오차가 3.111로 좋은 성능을 보여주었고 특히 학습성능과 더불어 학습속도에서 우수한 결과를 보여주었다. 현재 도출된 결과로 볼 때, 슬러리 쉴드 TBM의 기계데이터와 지반정보가 포함된 데이터를 활용한 디스크 커터 마모 예측 모델의 적합성은 높다고 보인다. 추가적으로 지반조건의 다양성과 디스크 마모 측정 데이터양을 늘리는 연구가 필요한 것으로 판단된다.

온실 내 백다다기 오이의 생육단계에 따른 흡광계수 변화 모델 개발 (Development of a Light Extinction Coefficient Change Model according to the Growth Stage of Cucumber in a Greenhouse)

  • 전기범;신종화
    • 생물환경조절학회지
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2023
  • 시설 내 작물이 이용하는 수광특성의 이해와 지속적으로 변화하는 광환경의 추적은 광합성과 증산반응 연구에서 중요하다. 또한 재배기간 동안 작물이 생장함에 따라 광이용 형태가 지속적으로 변화한다. 따라서 본 연구에서는 작물의 생육을 반영한 흡광계수 추정 모델을 개발하였다. 흡광계수의 측정을 위하여 작물의 높이에 따라 수직으로 일사량계를 5개 설치하였으며, 작물의 전 생육기간(1-85DAT) 동안 1초 단위로 측정을 하였다. 초기, 중기, 후기 각각의 생육단계에 따라 최상단 광량과 최하단의 광량의 차이가 69%, 72%, 81%로 증가하는 경향을 보였다. LAI와 초장이 증가함에 따라 흡광계수는 감소하였으며, 지수적 감소 관계를 보였다. 두 생육지표를 모두 반영한 3차원 모델에서는 Paraboloid 식이 평균 제곱근 오차(RMSE)가 1.340으로 가장 낮았고, 결정계수(R2)는 0.968로 가장 높았다. 본 연구를 통하여 작물 재배기간 동안 보다 정확한 흡광계수를 예측할 수 있게 되었고, 이는 작물의 높이에 따른 광합성 및 증산량 예측과 분석 연구에 활용될 수 있을 것으로 판단된다.

기계학습을 활용한 계란가격 예측 모델링 (Modeling for Egg Price Prediction by Using Machine Learning)

  • 조호현;이대겸;채영훈;장동일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.15-17
    • /
    • 2022
  • 2020년 하반기부터 2021년 초까지 발생한 조류인플루엔자의 여파로 1,780만수의 산란계가 살처분되면서 계란 공급 부족으로 계란 1판에 1만원을 넘는 사태가 벌어지기도 했다. 이에 정부는 물가 안정 대책으로 1,000억원 이상의 국고를 계란 수입에 투입하였지만, 계란 가격의 안정화는 쉽지 않았다. 계란 가격의 급격한 변동성은 소비자와 양계농가 모두에게 부정적인 영향을 미치므로 계란 가격의 안정화 방안을 위한 대책이 필요하다. 이를 위해 본 연구에서는 머신러닝 회귀분석 알고리즘을 활용하여 계란 가격을 예측하였으며, 가격 예측을 위해서 대한양계협회 2012~2021년도의 월간 산란계 생산통계와 국가통계포털(KOSIS)의 도축실적 등 총 8개의 독립변수를 선택하였다. 실제 가격과 모델에 의한 예측 가격의 차이를 나타내는 평균 제곱근 오차(RMSE)는 약 103원이며, 이는 개발된 모델이 계란 가격을 비교적 잘 예측한 결과라고 판단된다. 정확한 계란 가격 예측은 산란계 계란 생산주령의 유연한 조정과 산란계 입식에 대한 의사결정을 도울 수 있고, 계란 가격 안정성 확보에 도움을 줄 것으로 보인다.

  • PDF

생존자료분석에서 성향 점수를 이용한 treatment delay effect 추정법에 대한 연구 (Propensity score methods for estimating treatment delay effects)

  • 정주이;송현진;한승봉
    • 응용통계연구
    • /
    • 제36권5호
    • /
    • pp.415-445
    • /
    • 2023
  • 생존 자료에서 Hade 등 (2020) 은 시간-의존 교란 변수가 환자의 처치 시점에 영향을 미칠 때, 해당 효과를 보정하여 treatment delay effect를 올바르게 추정하기 위해 성향 점수 매칭 방법을 이용하였다. 이 때, treatment delay effect란 환자가 관심 있는 지연 시점만큼 늦게 처치를 받는 경우 제 때 받는 경우에 비해 사건 발생 위험에 미치는 영향을 의미한다. 본 연구에서는 또 다른 성향 점수 기반 모형인 Cox-MSM 모형 또한 해당 효과를 올바르게 추정할 수 있는지 모의 실험을 통해 확인 및 기존 매칭 모형과 비교하였다. 모의실험 결과, 세 가지 모형 모두 다양한 시나리오 내에서 treatment delay effect를 올바르게 추정함을 확인하였다. 특히 모든 시나리오 내에서 Cox-MSM의 제곱근평균제곱오차의 값이 가장 낮았으며, restricted Cox matching 모형에서 가장 큰 값을 가지는 것으로 나타났다. 결론적으로, 성향 점수에 기반하나 매칭이 아닌 방법 또한 treatment delay effect 적용이 가능하다는 결과를 제공한다. 추후 G-formula과 같이 성향 점수 기반이 아닌 모형에서도 적용이 가능한지에 대한 상세 연구가 필요하다고 사료된다.

임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구 (A simulation study for various propensity score weighting methods in clinical problematic situations)

  • 정시성;민은정
    • 응용통계연구
    • /
    • 제36권5호
    • /
    • pp.381-397
    • /
    • 2023
  • 대부분의 임상시험에서 가장 대표적으로 사용되는 실험설계는 무작위화로, 치료 효과를 정확하게 추정하기 위해 이용된다. 그러나 무작위화가 이루어지지 않은 관찰연구의 경우 치료군과 대조군의 비교로 얻는 치료효과에는 환자 간의 특성 등 여러 조정되지 않은 차이로 인해 편향이 발생한다. 성향 점수 가중치는 이러한 문제점을 해결하기 위해 널리쓰이는 방법으로 치료 효과를 추정하는데에 있어 교란요인을 조정하여 편향을 최소화하도록 하는 방법이다. 성향 점수를 이용한 가중치 방법 중 가장 널리 알려진 역확률 가중치는 관찰된 공변량이 주어졌을 때 특정 치료에 할당될 조건부 확률의 역에 비례하는 가중치를 할당한다. 그러나 이 방법은 극단적인 성향 점수에 의해 종종 방해 받아 편향된 추정치와 과도한 분산을 초래한다는 점이 알려져있어 이러한 문제를 완화하기 위해 절사 역확률 가중치, 중복 가중치, 일치 가중치를 포함한 여러 가지 대안 방법이 제안되었다. 본 논문에서는 제한된 중복, 잘못 지정된 성향 점수 모델 및 예측과 반대되는 치료 등 다양한 문제상황에서 여러 성향 점수 가중치 방법의 성능을 비교하는 시뮬레이션 비교연구를 수행하였다. 비교연구의 결과 중복 가중치와 일치 가중치는 편향, 제곱근평균제곱오차 및 포함 확률 측면에서 역확률 가중치와 절사역확률 가중치에 비에 우월한 성능을 보임을 확인하였다.

다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화 (Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms)

  • 심기찬;이강수
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.163-171
    • /
    • 2024
  • 본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.

PM2.5농도 산출을 위한 경험적 다중선형 모델 분석 (Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations)

  • 추교황;이규태;정명재
    • 한국지구과학회지
    • /
    • 제38권4호
    • /
    • pp.283-292
    • /
    • 2017
  • 본 연구에서는 서울지역의 지상 미세먼지($PM_{2.5}$) 농도를 산출하기 위하여 경험적인 모델들을 개발하였다. 연구에 이용한 자료는 2012년 1월 1일부터 2013년 12월 31일까지이며 Terra와 Aqua위성의 MODIS센서에서 산출되는 에어로졸 광학두께, 옹스트롬 지수, 기상변수들과 행성경계층두께와 관련된 6개의 다중 선형 회귀모델들의 차이를 분석하였다. 그 결과 에어로졸 광학두께와 옹스트롬 지수, 상대습도, 풍속, 풍향, 행성경계층두께, 기온 자료를 입력 자료로 사용한 $M_6$모델이 가장 좋은 결과를 보였다. 통계적인 분석에 따르면 $M_6$ 모델을 사용하여 계산된 $PM_{2.5}$와 관측된 $PM_{2.5}$농도 사이의 결과는 상관계수(R=0.62)와 평균제곱근오차($RMSE=10.70{\mu}gm^{-3}$)이다. 또한 산출된 계절별 지표면 $PM_{2.5}$농도는 여름철(R=0.38)과 겨울철(R=0.56)보다 봄(R=0.66)과 가을철(R=0.75)에 상대적으로 더 좋은 상관 관계를 보였다. 이러한 결과는 에어로졸 광학두께의 계절별 관측 특성으로 인한 것으로써 다른 계절에 비하여 여름과 겨울철 에어로졸 광학두께 관측이 구름과 눈/얼음 표면에 의한 관측 제한과 오차를 가져온 것으로 분석되었다. 따라서 본 연구에서 사용한 경험적 다중선형회귀 모델은 위성에서 산출된 에어로졸 광학두께 자료가 지배적인 변수로 작용하며 $PM_{2.5}$산출 결과들을 향상시키기 위해서는 추가적인 기상 변수를 이용해야 할 것이다. 또한 경험적 다중선형회귀 모델을 이용하여 $PM_{2.5}$를 산출한 결과는 인공위성 자료로부터 대기환경 감시를 가능하게 하는 방법이 될 수 있어 유용할 것이다.

신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성 (Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model)

  • 박소예나;이동섭;조영헌
    • 한국해양학회지:바다
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2016
  • 동해 표층 해수에서 측정한 이산화탄소 분압($pCO_2$)에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층$pCO_2$자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{\mu}atm$으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{\circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{\circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{\mu}atm$이었다. 신경망 모델이 울릉분지의 $pCO_2$에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.

고압나트륨등 보광 온실의 열적 거동 및 엽온 분석 (Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse)

  • 윤승리;김진현;신민주;김동필;방지웅;정호정;안태인
    • 생물환경조절학회지
    • /
    • 제32권1호
    • /
    • pp.48-56
    • /
    • 2023
  • 고압나트륨등(high-pressure sodium, HPS 램프)은 작물 생육 발달에 필요한 충분한 양의 광합성유효방사를 제공하는 동시에 복사열을 통해 온실 난방 부하를 절감할 수 있어 겨울철 시설원예 보광 조명으로 널리 이용되고 있다. 그러나 겨울철에 생육 중기를 맞이하는 시설 과채류의 경우, 작물의 정단부가 복사열에 영향을 많이 받고, 캐노피 위치에 따라 엽온 차이가 증가될 수 있다. 또한 온실 기온 역시 보광등에서 발생한 열이 상부로 상승 및 정체되면서 불필요한 에너지 낭비 및 온도 불균일성 역시 심화될 수 있다. 따라서 본 연구의 목표는 CFD 열전달 해석을 통해 HPS 램프에 의한 열적 특성 및 생육 단계별 수평적 엽온 변화를 분석하고, 온실 내 수직적 기온 및 작물의 캐노피별 엽온을 측정하여, 온실 내 환경 균일성 제고 및 효과적 에너지 활용 방안을 모색하는 것이었다. 생육 초기, 중기, 및 후기를 대변하는 초장(1.0, 1.6, 2.2m)에서의 정단부 수평적 엽온을 CFD 시뮬레이션을 통해 분석하였다. 또한 HPS 램프 작동 이후 수직적 기온과 캐노피 높이별 엽온을 측정하였다. 실험 결과, 보광 시 엽온과 기온 간의 차이가 커지고, 수직적 기온 역시 불균일해짐을 알 수 있었다. 생육 단계가 진전될수록, 고온의 복사열이 중심부에 집중되며, 상단부 수평적 엽온 편차가 커지고, 균일성 역시 떨어지는 것을 알 수 있었다. 열획득 모델을 통한 수치해석 결과, 보광등이 2022년12월 기간 난방부하에 약 50.1% 기여하는 것을 알 수 있었다. 평균절대오차 및 평균제곱근 오차는 생육 초기 및 생육 중기 모두0.5 이하로, 실측값과 예측값에 높은 일치도를 보였다. 수직적 기온 및 엽온 분포와 생육 단계별 수평적 엽온 분포에 관한 본 연구의 결과는 효율적 에너지 관리 및 작물 생육 발달에 관한 의사결정에 도움이 될 수 있을 것으로 생각된다.

금속 인공물 감소를 위한 CT 알고리즘 적용에 따른 영상 화질 비교 (Comparison of Image Quality among Different Computed Tomography Algorithms for Metal Artifact Reduction)

  • 이귀철;박영준;홍주완
    • 한국방사선학회논문지
    • /
    • 제17권4호
    • /
    • pp.541-549
    • /
    • 2023
  • 본 연구는 CT 촬영 시 금속으로 인해 발생한 금속 인공물 감소를 위한 알고리즘 적용에 따른 영상 화질에 대한 정량적 비교를 하고자 한다. Spectral detected-based CT와 CT ACR 464 팬톰을 이용하여 일반적인 필터보정역투영 알고리즘을 적용한 기준 영상을 10장 획득하고, 동일 팬톰에 금속 인공물을 발생시켜 일반적인 필터보정역투영 알고리즘을 적용한 영상을 10장 획득하였다. 금속 인공물을 발생시켜 획득한 영상의 원시 데이터에 metal artifact reduction 알고리즘, 가상 단일 에너지 알고리즘, metal artifact reduction 알고리즘 적용 후 추가로 가상 단일 에너지 알고리즘을 적용한 영상을 각각 10장씩 획득하였다. 알고리즘 적용에 따른 hounsfield unit 비교를 위해 CT ACR 464 팬톰 module 1에 위치한 폴리에틸렌, 뼈, 아크릴, 공기, 물에 관심영역을 설정하고, 전체 영상 화질 평가를 위해 평균 제곱근 오차, 평균 절대 오차, 신호 대 잡음비, 최대 신호 대 잡음비, 구조적 유사도 지수 지표를 통해 알고리즘 별 비교하였다. 알고리즘 적용 영상 별 hounsfield unit 비교 결과 알고리즘 적용 영상 간 유의한 차이를 보였으며(p < .05), 아크릴을 제외한 관심영역에서 가상 단일 에너지 알고리즘 적용 영상에서 큰 변화를 나타냈다. 영상 화질 평가 지표 결과 metal artifact reduction 알고리즘 적용 영상 화질이 가장 높았으나, 구조적 유사도 지수는 metal artifact reduction 알고리즘 적용 후 추가로 가상 단일 에너지 알고리즘이 동시에 적용된 영상이 가장 높았다. CT 촬영 시 금속 인공물 감소에 metal artifact reduction 알고리즘이 가상 단일 에너지 알고리즘에 비해 효과적이었지만, 양질의 CT 영상 획득을 위해 알고리즘 적용에 따른 이점과 영상 화질 변화를 파악하고 효율적인 활용이 필요하다고 사료된다.