• Title/Summary/Keyword: 평균오차제곱

Search Result 365, Processing Time 0.021 seconds

Vocal separation method using weighted β-order minimum mean square error estimation based on kernel back-fitting (커널 백피팅 알고리즘 기반의 가중 β-지수승 최소평균제곱오차 추정방식을 적용한 보컬음 분리 기법)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • In this paper, we propose a vocal separation method using weighted ${\beta}$-order minimum mean wquare error estimation (WbE) based on kernel back-fitting algorithm. In spoken speech enhancement, it is well-known that the WbE outperforms the existing Bayesian estimators such as the minimum mean square error (MMSE) of the short-time spectral amplitude (STSA) and the MMSE of the logarithm of the STSA (LSA), in terms of both objective and subjective measures. In the proposed method, WbE is applied to a basic iterative kernel back-fitting algorithm for improving the vocal separation performance from monaural music signal. The experimental results show that the proposed method achieves better separation performance than other existing methods.

MSE-Based Power Saving Method for Relay Systems (중계 시스템을 위한 MSE-기반 송신 전력 감소 기법)

  • Joung, Jin-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.562-567
    • /
    • 2009
  • In this paper, two-hop beamforming relay system, with source, relay, and destination nodes, is considered and the transmit- and receive-beamforming vectors and the relay processing matrix are designed for minimizing a mean square error (MMSE) between the transmit and receive signals. Here, to reduce the transmit power of the source or the relay, two local inequality constraints are involved with MMSE problem. By adopting the Lagrange method, closed formed Karush-Kuhn-Tucker (KKT) conditions (equalities) are derived and an iterative algorithm is developed to solve the entangled KKT equalities. Due to the inequality power constraints, the source or the relay can reduce its transmit power when the received signal-to-noise ratios (SNRs) of the first- and the second-hop are different. Meanwhile, the destination can achieve almost identical bit-error-rate performance compared to an optimal beamforming system maximizing the received SNR. This claim is supported by a computer simulation.

On asymptotics for a bias-corrected version of the NPMLE of the probability of discovering a new species (신종발견확률의 편의보정 비모수 최우추정량에 관한 연구)

  • 이주호
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.341-353
    • /
    • 1993
  • As an estimator of the conditional probability of discovering a new species at the next observation after a sample of certain size is taken, the one proposed by Good(1953) has been most widely used. Recently, Clayton and Frees(1987) showed via simulation that their nonparametric maximum likelihood estimator(NPMLE) has smaller MSE than Good's estimator when the population is relatively nonuniform. Lee(1989) proved that their conjecture is asymptotically true for truncated geometric population distributions. One shortcoming of the NPMLE, however, is that it has a considerable amount of negative bias. In this study we proposed a bias-corrected version of the NPMLE for virtually all realistic population distributions. We also showed that it has a smaller asymptotic MSE than Good's extimator except when the population is very uniform. A Monte Carlo simulation was performed for small sample sizes, and the result supports the asymptotic results.

  • PDF

A Comparative Study on Spatial Lattice Data Analysis - A Case Where Outlier Exists - (공간 격자데이터 분석에 대한 우위성 비교 연구 - 이상치가 존재하는 경우 -)

  • Kim, Su-Jung;Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.193-204
    • /
    • 2010
  • Recently, researchers of the various fields where the spatial analysis is needed have more interested in spatial statistics. In case of data with spatial correlation, methodologies accounting for the correlation are required and there have been developments in methods for spatial data analysis. Lattice data among spatial data is analyzed with following three procedures: (1) definition of the spatial neighborhood, (2) definition of spatial weight, and (3) the analysis using spatial models. The present paper shows a spatial statistical analysis method superior to a general statistical method in aspect estimation by using the trimmed mean squared error statistic, when we analysis the spatial lattice data that outliers are included. To show validation and usefulness of contents in this paper, we perform a small simulation study and show an empirical example with a criminal data in BusanJin-Gu, Korea.

Performance Analysis of Monopulse System Based on Second-Order Taylor Expansion of Two Variables in the Presence of an Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 2변수 2차 테일러 전개 기반 분석)

  • Ryu, Kyu-Tae;Ham, Hyeong-Woo;Lee, Joon-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • In this paper, it is shown how the performance of the monopulse algorithm in additive noise is evaluated. In the previous study, the performance analysis of the amplitude-comparison monopulse algorithm was conducted via the first-order and second-order Taylor expansion of four variables. By defining two new random variables from the four variables, it is shown that computational complexity associated with two random variables is much smaller than that associated with four random variables. Performance in terms of mean square error is analyzed from Monte-Carlo simulation. The scheme proposed in this paper is more efficient than that suggested in the previous study in terms of computational complexity. The expressions derived in this study can be utilized in getting analytic expressions of the mean square errors.

Estimation of Population Mean Using Modified Systematic Sampling and Least Squares Method (변형된 계통추출과 최소제곱법을 이용한 모평균 추정)

  • 김혁주
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.105-117
    • /
    • 2004
  • In this paper, a new method is developed for estimating the mean of a population which has a linear trend. This method involves drawing a sample by the modified systematic sampling, and then estimating the population mean with an adjusted estimator, not with the sample mean itself. We use the method of least squares in determining the adjusted estimator. The proposed method is shown to be more and more efficient as the linear trend becomes stronger. It turns out to be relatively efficient as compared with the conventional methods if $\sigma$$^2$the variance of the random error term in the infinite superpopulation model, is not very large.

An Error Assessment of the Kriging Based Approximation Model Using a Mean Square Error (평균제곱오차를 이용한 크리깅 근사모델의 오차 평가)

  • Ju Byeong-Hyeon;Cho Tae-Min;Jung Do-Hyun;Lee Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.923-930
    • /
    • 2006
  • A Kriging model is a sort of approximation model and used as a deterministic model of a computationally expensive analysis or simulation. Although it has various advantages, it is difficult to assess the accuracy of the approximated model. It is generally known that a mean square error (MSE) obtained from the kriging model can't calculate statistically exact error bounds contrary to a response surface method, and a cross validation is mainly used. But the cross validation also has many uncertainties. Moreover, the cross validation can't be used when a maximum error is required in the given region. For solving this problem, we first proposed a modified mean square error which can consider relative errors. Using the modified mean square error, we developed the strategy of adding a new sample to the place that the MSE has the maximum when the MSE is used for the assessment of the kriging model. Finally, we offer guidelines for the use of the MSE which is obtained from the kriging model. Four test problems show that the proposed strategy is a proper method which can assess the accuracy of the kriging model. Based on the results of four test problems, a convergence coefficient of 0.01 is recommended for an exact function approximation.

A Comparison of Estimation Procedures in a Nested Error Components Regression Model (내포오차성분을 가정한 패널회귀모형에서 추정량의 효율에 관한 비교)

  • 송석헌;전명식;정병철
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.1
    • /
    • pp.55-70
    • /
    • 2000
  • 본 논문에서는 내포오차성분을 가지는 패널회귀모형에서 회귀계수에 대하여 다양한 추정량들을 유도하고, 추정량들의 효율성을 모의실험을 통하여 평균제곱오차의 기준에서 비교하였다. 모의실험 결과, 제안된 FGLS 추정량들은 GLS추정량과 효율성에서 서로 큰 차이를 보이지 않았으며, 계산상 더욱 복잡한 ML, REML 추정량 및 MIVQUE와 거의 비슷한 효율성을 보여주었다.

  • PDF

Automated Image Co-registration using Pre-qualified Area Based Mating and Outlier Removal (사전검수 영역기반정합법과 과대오차제거를 이용한 '자동영상좌표 상호등록')

  • Kim Jong-Hong;Joon Heo;Sohn Hong-Gyoo
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.49-52
    • /
    • 2006
  • 최근 대규모 지역 혹은 전 지구에 걸친 분석 및 모니터링을 위한 위성영상의 사용이 늘어나면서 이를 처리하기 위한 효율적인 '영상좌표 상호등록'법이 요구되고 있다. 이에 본 연구에서는 일반적으로 오랜 시간이 소요되는 '영상좌표 상호등록'의 효율성을 높이기 위해 '사전검수영역기반정합법'(Pre-qualified area based matching)을 사용하였다. 이를 통해 '영상좌표 상호등록'시 연산시간을 현저히 단축시켰고 추출된 정합점에 과대오차제거법을 적용함으로서 단순히 영역기반정합법을 적용한 경우에 비해서 정확도가 향상됨을 확인할 수 있었다. 제안한 알고리즘을 이용하여 테스트 프로그램을 작성, 한반도 Landsat ETM+ 영상 3장을 이용하여 테스트하였다. 정합점 간의 평균제곱오차는 0.436 영상소, 정합점은 평균 38,475개로 나타났다. 연산시 간은 평균 약 8분으로 나타났다.

  • PDF

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.