This study predicts the average scores of top 150 PGA golf players on 132 PGA Tour tournaments (2013-2015) using data mining techniques and statistical analysis. This study also aims to predict the Top 10 and Top 25 best players in 4 different playoffs. Linear and nonlinear regression methods were used to predict average scores. Stepwise regression, all best subset, LASSO, ridge regression and principal component regression were used for the linear regression method. Tree, bagging, gradient boosting, neural network, random forests and KNN were used for nonlinear regression method. We found that the average score increases as fairway firmness or green height or average maximum wind speed increases. We also found that the average score decreases as the number of one-putts or scrambling variable or longest driving distance increases. All 11 different models have low prediction error when predicting the average scores of PGA Tournaments in 2015 which is not included in the training set. However, the performances of Bagging and Random Forest models are the best among all models and these two models have the highest prediction accuracy when predicting the Top 10 and Top 25 best players in 4 different playoffs.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.55-58
/
2000
본 논문에서는 화자 확인 시스템의 등록과 확인 과정의 채널 환경 불일치로 성능이 저하되는 문제를 해결하기 위한 새로운 정규화 방법에 대해 설명한다. 제안된 방법은 첫째, 입력 음성으로부터 효과적으로 채널을 추정$\cdot$보상하고 둘째, 스코어 정규화 과정에서 사칭자 모델로서 사용되는 world모델과의 차이를 채널 추정 및 화자 모델 생성에 효과적으로 사용하는 것을 목표로 한다. 이를 위해 입력 음성의 켑스트럼과 HMM world 모델의 파라메터인 평균 켑스트럼과의 차이를 통해 음소열에 종속적인 채널 켑스트럼인 Phone-Dependent Difference Cepstrum을 추정한다. 한편 입력 음성의 음소열은 world모델의 스코어를 얻는 과정에서 함께 얻어질 수 있다. 채널 추정 실험 결과를 통해서 가장 일반적인 채널 정규화방법인 CMS에 의해 추정된 채널에 비해 실제 채널과 유사하며 화자 고유의 특성을 왜곡시키지 않는 채널 추정이 가능함을 확인할 수 있었다.
This study was undertaken to document the clinical results and technical aspects of arthroscopic repair including popliteus tendon as a post for the treatment of complex lateral meniscus in young people indicated as total meniscectomy. From June 2004 to May 2006, we prospectively studied arthroscopic repairs on 32 young people knees with symptomatic complex lateral meniscus that was treated by all inside repair technique using Popliteus tendon as a post. Clinical results were evaluated using Lysholm knee scores preoperatively and at final follow-up. 2nd look arthroscopy or MRI was taken at final follow-up. 80% of patients carried out MRI or 2nd look arthroscopy under permission. Most patients who follow up were able to return to their previous life activities with little or no limitation, and no reoperation was required after an average follow-up of 42.8 months. Mean Lysholm knee scores improved from 65.4 (range, 55 to 75) preoperatively to 93.9 (range, 79 to 100) at the final follow-up (P<.001). 80% meniscus healing was found on arthroscopic or MRI follow up. Conclusively, arthroscopic repair using Popliteus tendon as a post is effective for treating young people with complex lateral meniscus tear as a salvage procedure.
Recently, a number of deep-learning based land cover segmentation studies have been introduced. Some studies denoted that the performance of land cover segmentation deteriorated due to insufficient training data. In this study, we verified the improvement of land cover segmentation performance through data augmentation. U-Net was implemented for the segmentation model. And 2020 satellite-derived landcover dataset was utilized for the study data. The pixel accuracies were 0.905 and 0.923 for U-Net trained by original and augmented data respectively. And the mean F1 scores of those models were 0.720 and 0.775 respectively, indicating the better performance of data augmentation. In addition, F1 scores for building, road, paddy field, upland field, forest, and unclassified area class were 0.770, 0.568, 0.433, 0.455, 0.964, and 0.830 for the U-Net trained by original data. It is verified that data augmentation is effective in that the F1 scores of every class were improved to 0.838, 0.660, 0.791, 0.530, 0.969, and 0.860 respectively. Although, we applied data augmentation without considering class balances, we find that data augmentation can mitigate biased segmentation performance caused by data imbalance problems from the comparisons between the performances of two models. It is expected that this study would help to prove the importance and effectiveness of data augmentation in various image processing fields.
Communications for Statistical Applications and Methods
/
v.19
no.2
/
pp.277-286
/
2012
For credit assessment models, the ROC curves evaluate the classification performance using two univariate cumulative distribution functions of the false positive rate and true positive rate. In this paper, it is extended to two bivariate normal distribution functions of default and non-default borrowers; in addition, the bivariate ROC curves are proposed to represent the joint cumulative distribution functions by making use of the linear function that passes though the mean vectors of two score random variables. We explore the classification performance based on these ROC curves obtained from various bivariate normal distributions, and analyze with the corresponding AUROC. The optimal threshold could be derived from the bivariate ROC curve using many well known classification criteria and it is possible to establish an optimal cut-off criteria of bivariate mixture distribution functions.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.77-81
/
2013
본 논문은 두 가지 주제에 대해 연구한다. 첫 번째는 수학식 검색에 대한 것이다. 웹에는 양질의 수학식 데이터가 마크업 언어 형태로 저장되어 있으며 이를 활용하기 위한 연구들이 활발히 진행되고 있다. 본 연구에서는 MathML (Mathematical Markup Language)로 저장된 수학식 데이터를 일반 질의어를 이용하여 검색한다. 두 번째 주제는 토픽 모델(topic model)로 검색 성능을 향상시키는 방법에 대한 것이다. 먼저 수학식 데이터를 일반 자연어 문장으로 변환한 후 Indri 시스템을 이용하여 검색을 수행하고, 토픽 모델을 이용하여 미리 산출된 스코어를 적용하여 검색 순위를 재랭킹한 결과, MRR 기준 평균 5%의 성능을 향상시킬 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.432-434
/
2022
우리는 전이 학습을 이용하여 원하는 특정 패션 스타일 분류기를 학습하였다. 패션 스타일 검색 결과물을 온라인 쇼핑몰과 연결하는 웹 서비스를 사용자에게 제공한다. 패션 스타일 분류기는 구글에서 이미지 검색을 통해 수집된 데이터를 이용하여 ResNet34[1]에 전이 학습하였다. 학습된 분류 모델을 이용하여 사용자 이미지로부터 패션 스타일을 17가지 클래스로 분류하였고 F1 스코어는 평균 65.5%를 얻었다. 패션 스타일 분류 결과를 네이버 쇼핑몰과 연결하여 사용자가 원하는 패션 상품을 구매할 수 있는 서비스를 제공한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.621-623
/
2023
전자금융거래 시장이 활발해지며 이에 따라 신용 카드 이상 거래가 증가하고 있다. 따라서 많은 금융 기관은 신용 카드 이상 거래 탐지 시스템을 사용하여 신용 카드 이상 거래를 탐지하고 개인 피해를 줄이는 등 소비자를 보호하기 위해 큰 노력을 하고 있으며, 이에 따라 높은 정확도로 신용 카드 이상 거래를 탐지할 수 있는 실시간 자동화 시스템에 대한 개발이 요구되었다. 이에 본 논문에서는 머신러닝 기법 중 부스팅 알고리즘을 사용하여 더욱 정확한 신용 카드 이상 거래 탐지 시스템을 제안하고자 한다. XGBoost, LightGBM, CatBoost 부스팅 알고리즘을 사용하여 보다 정확한 신용 카드 이상 거래 탐지 시스템을 개발하였으며, 실험 결과 평균적으로 정밀도 99.95%, 재현율 99.99%, F1-스코어 99.97%를 취득하여 높은 신용 카드 이상 거래 탐지 성능을 보여주는 것을 확인하였다.
Park Seung Woo;Kim Hyung Don;Sim Sang Woo;Yoo, Seong Won;Kim Jae-Soo;Lee Sang Won;Jeon Woo jin
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.739-740
/
2023
코로나19 의 여파로 생활 폐기물은 급속도로 늘어나는 반면 재활용 사업장의 여건은 개선되지 않고 있어 재활용 산업의 인력난 해결의 필요성이 떠오르고 있다. 이를 위해 본 논문에서는 딥러닝 모델을 활용하여 재활용 폐기물을 분류하는 방법을 제시한다. 딥러닝 모델은 최신 객체 탐지 모델인 YOLOv5를 사용하고, 객체 탐지 성능을 향상시키기 위해 실제 환경에서 수집된 학습용 데이터를 직접 라벨링하여 사용한다. 실험 결과 종류별 평균 0.69의 mAP50 스코어를 기록하였으며 이를 통해 딥러닝 모델을 활용하여 재활용 폐기물을 효율적으로 분류하는 것이 가능함을 확인하였다.
Recently lots of attention has been paid to gene set analysis for identifying differentially expressed gene-sets between two sample groups. Unlike earlier approaches, the gene set analysis enables us to find significant gene-sets along with their functional characteristics. For this reason, various novel approaches have been suggested lately for gene set analysis. As one of such, PAGE is a parametric approach that employs average difference (AD) as an expression metric to quantify expression differences between two sample groups and assumes that the distribution of gene scores is normal. This approach is preferred to non-parametric approach because of more effective performance. However, the metric AD does not reflect either gene expression intensities or variances over samples in calculating gene scores. Thus, in this paper, we investigate the usefulness of several other expression metrics for parametric gene-set analysis, which consider actual expression intensities of genes or their expression variances over samples. For this purpose, we examined three expression metrics, WAD (weighted average difference), FC (Fisher's criterion), and Abs_SNR (Absolute value of signal-to-noise ratio) for parametric gene set analysis and evaluated their experimental results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.