• Title/Summary/Keyword: 평균수명예측

Search Result 81, Processing Time 0.029 seconds

Effect of Mean Stress on the Fatigue Life of Engine Mount and Life Prediction (방진고무부품 피로수명에 끼치는 평균하중의 영향 및 피로수명 예측)

  • Lee, H.J.;Kim, W.D.;Choi, B.I.;Woo, C.S.;Kim, J.Y.;Koh, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.99-104
    • /
    • 2001
  • Effect of mean stress on the fatigue life of natural rubber for engine mount was investigated. Fatigue damage parameter based on the maximum Green-Lagrange strain was employed to account for the effect of mean stress. A procedure to predict the fatigue life of rubber components based on the maximum Green-Lagrange strain method was proposed. Nonlinear finite element analysis and fatigue test of jang-gu shape specimen were conducted to predict the fatigue life of engine mount. Predicted fatigue lives have a good agreement with tested lives within a factor of 3.

  • PDF

Estimation of Mean Life and Reliability of Highway Pavement Based on Reliability Theory (신뢰성 개념을 이용한 포장의 평균수명 및 신뢰도 예측)

  • Do, Myung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.497-504
    • /
    • 2010
  • In this paper, the author presents a reliability estimation technique to analyze the effects of traffic loads on pavement mean life based on the national highway database of Suwon and Uijeongbu region from 1999 to 2008. The estimation of the mean life, its standard deviation and reliability for pavement sections are calculated by using an appropriate distribution, Lognormal distribution, based on reliability theory. Furthermore, the probability paper method and Maximum likelihood estimation are both used to estimate parameters. The author found that mean life of newly constructed sections and over-layed sections is about 6.5 to 7.9 years and 7.3 to 9.1 years, respectively. The author also ascertained that the results of cumulative failure probability for pavement life between the proposed methods and observed data are similar. Such an assessment methodology and measures based on reliability theory can provide useful information for maintenance plans in pavement management systems as long as additional life data on pavement sections are accumulated.

Reliability Prediction of Digital Protection Relay (디지털 보호계전기의 신뢰도 분석)

  • Song, In-Jun;An, Yong-Ho;Yang, Gwi-Jang;Jun, Kwang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.377-378
    • /
    • 2008
  • 한전에서는 계통보호 설비의 신뢰도 확보를 위해 디지털 보호설비 사용을 확대하고 있으며, 이에 따른 합리적인 보호설비 교체기준을 설정하려고 한다. 본 논문에서는 디지털 보호계전기의 교체기준 설정을 위해 디지털 보호 계전기(Digital Distance Relay)와 구성모듈에 대한 고장률(Failure rate)과 평균수명(Mean Time between Failures, MTBF), 그리고 시간에 따른 신뢰도를 분석하였다. 수명예측방법은 MIL-HDBK-217F, Notice 2의 부품스트레스분석방법(Part Stress Analysis Method) 사용하였다.

  • PDF

Prediction of Fatigue life of Composite Laminates using Micromechanics of Failure (미시역학적 파손이론을 이용한 복합재 적층판의 피로수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Many tests are required to predict the fatigue life of composite laminates made of various materials and having different layup sequences. Aiming at reducing the number of tests, a methodology was presented in this paper to predict fatigue life of composite laminates based on fatigue life prediction of constituents, i.e. the fiber, matrix and interface, using micromechanics of failure. For matrix, the equivalent stress model which is generally used for isotropic materials was employed to take care of multi-axial fatigue loading. For fiber, a maximum stress model considering only stress along fiber direction was used. The critical plane model was introduced for the interface of the fiber and matrix, but fatigue life prediction was ignored for the interface since the interface fatigue strength was presumed high enough. The modified Goodman equation was utilized to take into account the mean stress effect. To check the validity of the theory, the fatigue life of three different GFRP laminates, UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S and TX[$0^{\circ}/{\pm}45^{\circ}$]S was examined experimentally. The comparison between predictions and test measurements showed good agreement.

Prediction of Lifetime of Steel Bridge Coating on Highway for Effective Maintenance (고속도로 강구조물의 효율적 유지관리를 위한 도막수명예측)

  • Lee, Chan-Young;Cheong, Haimoon;Park, Jin-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.341-347
    • /
    • 2008
  • Among coating systems used for steel bridge coatings on highway such as red lead-pigmented alkyd, chlorinated rubber, waterborne inorganic zinc, inorganic zinc/epoxy/urethane and inorganic zinc/epoxy/fluororesin, evaluation of deterioration degree and prediction of lifetime through regression analysis were carried out for coating systems widely used and grossly degraded. For evaluation of deterioration degree, 75 bridges on highway were selected, and evaluations were carried out according to point offering method regulated by Guideline of maintenance coating for steel bridges used in Korea Expressway Corporation. Lifetime prediction results showed 13.0~13.3 years for the whole nation, 11.8 years for urban and industrial region in the metropolitan area, 13.2 years for rural region except the metropolitan area, 13.5~13.7 years for chlorinated rubber coating systems, and 12.86 years for red lead-pigmented alkyd systems. For prediction of the rest life of coating, we tried to execute parallel translations of standard deterioration curve to current life and deterioration degree for both x and y axes, and it was thought that parallel translation for x axis corresponded to deterioration aspects in actual environment. Maximum and minimum equations were derived from standard deterioration equation by adding and subtracting error values deduced in regression analysis to/from each coefficient in order to establish maintenance coating criteria for overall steel bridges on highway. Whole domain was divided into 8 parts in order to predict the rest life of coating and optimum time of maintenance coating, and maintenance coating criteria for each 8 domains were presented.

The Prediction of Remaining Life of Concrete Bridge Decks Using The Reliability Analysis (신뢰도 분석을 통한 고속도로 교량의 바닥판 잔존 수명 예측)

  • Park, Jung-Hee;Lee, Sang-Soon;Kim, Ji-Won;Park, Cheol-Woo;Lee, Dong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • Korean national highway has been increased 2 times more for the past ten years because of many highway geometric improvements and new routes since 2000. According to the reasons, maintenance cost has been increased continuously. Deterioration of concrete bridge decks caused by asphalt pavement deformation occupies a high proportion of overall bridge management budget. The number of current highway bridges has reached over 7,800 in 2011, and It is difficult to determine to some future budget. This study predicted the remaining life of concrete bridge decks using the reliability analysis based on Weibull distribution. and The expected future maintenance cost was estimated.

Prediction of Shelf-Life of Chewing Gum Based on Moisture Gain and Loss (흡탈습량에 의한 츄잉껌의 Shelf-Life 예측)

  • Chung, Duk-Ho;Lee, Yoon-Hyung;Yoo, Myung-Shik;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.122-126
    • /
    • 1992
  • The shelf-life of wrapped chewing gum(7 sticks) under the climate condition of Seoul was predicted by using moisture gain equation to reach safe moisture limits of 3.16% (dry basis). The overall water vapor permeability of multilayer packaging material was about 0.00045g water/pack day mmHg. The water activity of chewing gum at any temperature was predictable using Clausius-Clapeyron equation. The most significant loss of shelf-life was occurred between June and July, and most products reached the end of shelf-life at July and August. The product which were made in October and November had the longest shelf-life as seven months.

  • PDF

A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor (k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안)

  • Kim, Jung-Tae;Seo, Yang-Woo;Lee, Seung-Sang;Kim, So-Jung;Kim, Yong-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.611-620
    • /
    • 2021
  • The maintenance industry is mainly progressing based on condition-based maintenance after corrective maintenance and preventive maintenance. In condition-based maintenance, maintenance is performed at the optimum time based on the condition of equipment. In order to find the optimal maintenance point, it is important to accurately understand the condition of the equipment, especially the remaining useful life. Thus, using simulation data (C-MAPSS), a prediction model is proposed to predict the remaining useful life of a turbofan engine. For the modeling process, a C-MAPSS dataset was preprocessed, transformed, and predicted. Data pre-processing was performed through piecewise RUL, moving average filters, and standardization. The remaining useful life was predicted using principal component analysis and the k-NN method. In order to derive the optimal performance, the number of principal components and the number of neighbor data for the k-NN method were determined through 5-fold cross validation. The validity of the prediction results was analyzed through a scoring function while considering the usefulness of prior prediction and the incompatibility of post prediction. In addition, the usefulness of the RUL prediction model was proven through comparison with the prediction performance of other neural network-based algorithms.

Conditioning diagnosis & on-line monitoring technology on the traction motor for railway rolling stock (철도차량 견인전동기의 상태진단 및 상시감시 기술)

  • Wang, Jong-Bae;Hong, Seon-Ho;Kim, Sang-Am;Kwak, Sang-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.92-95
    • /
    • 2003
  • 본 논문에서는 철도차량 견인전동기에 대한 상태진단 및 상시감시 기술에 관하여 소개하였다. 권선의 절연상태 진단을 위한 비파괴 시험법에서는 부분방전량 Q에 대한 평균열화도 $\Delta$로 표현되는 D-Map에 의해 잔여 절연내력(residual dielectric strength)을 예측하고, 기기의 운전이력측면에서 기동-정지 횟수와 열적, 전기적 및 열싸이클 스트레스 등에 의해 각 열화 인자를 고려한 운전시간에 기반한 N-Y 수명예측을 수행한다. 그리고 견인전동기의 전류에 대한 온라인 상태감시를 통해 베어링 고장, 고정자 및 전기자 고장, 고장 또는 전동기축 손상에 기인하는 비정상 운전상태 의 감지를 수행한다.

  • PDF

Estimation of Shelf Life for Propellant KM6 by Using Gamma Process Model (감마과정 모델을 이용한 KM6 추진제의 저장수명 예측)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • The aim of the study is to investigate the method to estimate a shelf life of KM6 single base propellant by stochastic gamma process model. The state failure level is assumed that the degradation content of stabilizer is below 0.8%. The constant of time dependent shape function and the scale parameter of stationary gamma process are estimated by moment method. The state distribution at each storage time can be shown from probability density function of deterioration. It is estimated that the $B_{10}$ life, a time at which the cumulative failure probability is 10%, is 25 years and the $B_{50}$ life is 36 years from cumulative failure distribution function curve. The $B_{50}$ life can be treated as the average shelf life from the practical viewpoint and the lifetime can be expressed as distribution curve by using stochastic process theory.