• Title/Summary/Keyword: 평균선량

Search Result 734, Processing Time 0.033 seconds

Evaluation of the Apron Effectiveness during Handling Radiopharmaceuticals in PET/CT Work Environment (PET/CT 업무 환경에서 선원 취급 시 Apron의 실효성 평가)

  • Cho, Yong-In;Ye, Soo-Young;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Health professionals in nuclear medicine were known that they get high radiation exposure. To reduce radiation exposure, using shielding materials is needed. In this study, we analyzed the shielding effect about apron during 18F-FDG treatment by using simulation based on Monte Carlo techniques and actual measurement. As a result, absorbed dose distribution of organ varies with handling position of the source. Dose reduction ratio by lead thickness of apron tended to decease, when handling position of the source come close to organ and away from radiation source for simulation. In the case of actual measurement with the dosimetry device, It showed that mean spatial dose distribution was different due to characteristics of dosimetry device. However, spatial dose rate was exponentially reduced according to distance with increasing lead content.

폐암 세기변조방사선치료 시 최적화된 조사계획 설정과 가상 장기 설정에 관한 연구

  • Lee, Seok;Lee, Chang-Geol;Cho, Sam-Ju;Chu, Sung-Sil;Lee, Sang-Hoon;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.34-34
    • /
    • 2003
  • 목적 : 폐암 환자 세기변조방사선치료 과정을 소개하고, 방사선치료계획의 최적화를 위한 빔 수와 방향, 가상장기 설정 (virtual organ delineation, VOD) 및 선량 제한 인자들의 이용에 대해 평가함으로써 폐, 심장 등에 조사되는 선량을 최소화하는데 사용하는 세기변조방사선치료 (intensity modulated radiotherapy, IMRT) 기술의 유용성을 평가하고자한다. 대상 및 방법 : 종양이 종격동을 침범하여 상대적으로 장기움직임에 의한 오차가 적은 폐암환자 5 명을 대상으로 하였다. 환자고정장치는 상반신을 편안하게 유지함과 동시에 팔의 위치를 고정시킴으로써 기대할 수 있는 환자고정효과와 벨트를 이용하여 환자 상복부를 압박해줌으로써 호흡운동에 의한 장기 움직임을 감소시킬 수 있는 형태로 고안하였다. 치료계획시 빔 수와 방향은 5,7,9 문 (from 200 to 160, equispaced field, arbitrary field), 4 문 (anterior, posterior, bilateral posterior oblique field) 과 비등방 7, 9 문 (non-equispaced field, arbitrary field) 등을 사용하였다. 선량제한 ($V_{20}V_{25}$)은 문헌에 기초하여 설정하였으며, 가상장기를 적절히 사용하여 최적화된 치료계획 결과를 얻었다. 방사선치료계획 평가는 선량-체적간 히스토그람 (DVH), 등선량곡선 및 선량통계 등을 이용하여 수행하였다. 특히 가상장기 설정 전, 후의 결과 값을 분석함으로써 그 유용성을 확인하였다. 결과 : 9문 등방-IMRT와 7문 비등방-IMRT 방법이 치료계획용적의 선량균질성 (PTV dose homogeneity), 평균 폐선량 (mean lung dose) 및 $V_{20}V_{25}$ 모두에서 20% 이내의 좋은 결과를 얻을 수 있었고, 가상 장기를 설정함으로써 같은 결과를 가져옴을 알 수 있었다. 또한 폐암 세기변조방사선치료 프로토콜을 작성하여 임상에 사용함으로써 치료과정 중 발생할 수 있는 오류를 보완할 수 있음을 알 수 있었다. 결론 : 폐암 세기변조방사선치료 시 사용할 수 있는 프로토콜을 작성하였고, 적절한 가상 장기 및 조사계획 설정으로 치료계획의 최적화를 얻을 수 있음을 알 수 있었다.

  • PDF

Average and Effective Energies, and Fluence-Dose Equivalent Conversion Factors for $^{239}Pu-Be,\;^{241}Am-Li\;and\;^{241}Am-F$ Neutron Sources

  • Ro, Seung-Gy;Yoo, Young-Soo
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.155-160
    • /
    • 1971
  • Average and effective energies for 239Pu-Be, 241Am-Li and 241Am-F neutron sources have been calculated from a number of published data for the neutron spectra and for the dose equivalent as a function of neutron energies by a numerical method. Also a calculation of the dose equivalent conversion factors, i. e., the first collision dose equivalent and the surface (or multicollision) dose equivalent that equals the product of surface-absorbed dose and a corresponding quality factor, per unit fluence of neutrons from these sources has been carried out in the same way as before. The results are as follows : 1. for average energies 4.07$\pm$0.33, 0.42 and 1.41 MeV; 2. for effective energies based on the concept of the first collision process in the human body 4.45$\pm$0.344, 0.51 and 1.47 MeV; 3. for effective energies based on the concept of the multi-collision process in the human body 4.50$\pm$0.36, 0.50 and 1.45 MeV; 4. for fluence-first collision dose equivalent conversion factors (2.74$\pm$0.07)10$^{-8}$ , 1.58$\times$ 10$^{-8}$ and 2.34$\times$10$^{-8}$ rems/(n/$\textrm{cm}^2$); and 5. for fluence-surface dose equivalent conversion factors (3.55$\pm$0.09)10$^{-8}$ , 2.19$\times$10$^{-8}$ and 2.82$\times$10$^{-8}$ rems/(n/$\textrm{cm}^2$) : respectively.

  • PDF

Comparison of Dose Distribution between the Techniques of Non-small Cell Lung Cancer (비소세포폐암의 방사선 치료기법간의 선량분포의 비교)

  • Lee, Seung-chul;Kim, Young-jae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.233-239
    • /
    • 2016
  • Comparison of the dose aspect that radiation therapy treatments using IMRT, tomotherapy, mArc (modulated arc therapy). The experimental subject is non-small cell lung cancer patient. The prescription dose is 58.0 Gy to the volume of PTV(planning target volume). and spinal cord, esophagus, and liver organ is the normal organ(OAR, organ at risk). Average PTV value is 57.60 Gy in mArc and 61.04 Gy in tomotherapy and 58.95 Gy in IMRT. The average dose of the Esophagus is 2.84 Gy in m-Arc, 5.14 Gy in tomotherapy, 1.84 Gy in IMRT. The average dose of the Liver is 19.44 Gy in m-Arc, 12.22 Gy in tomotherapy, 21.97 Gy in IMRT. The average dose of the Spinal cord is 5.72 Gy in m-Arc, 7.08 Gy in tomotherapy, 6.15 Gy in IMRT. Results of this study is no significant difference between mArc and tomotherapy and Linac based IMRT in dose study and also, mArc's dose coverage and dose volume histogram is better than IMRT and tomotherapy. but, This study is limited to a disease of cancer. in addition, fewer number of groups. The wide range the more research can be developed patient-specific treatment techniques and be applied to the patients

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients (호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석)

  • Kim, Youngkuk;Lim, Sangwook;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Ro, Tae Ik
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2014
  • To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF

The Evaluation of Hybrid-Volumetric Modulated Arc Therapy for Lung Cancer Radiation Therapy (폐암 방사선 치료 시 Hybrid-Volumetric Modulated Arc Therapy의 유용성 평가)

  • Lee, Geon Ho;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Du Sang;Ahn, Min Woo;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • Objectives: In the Lung, the VMAT rotates continuously and examines radiation. That increases the low doses to normal lung. Due to that, the incidence of radiation pneumonia among radiation side effects may increase. The cause of radiation pneumonia is the lower dose area of the lungs. The H-VMAT was applied to patients who applied to reduce radiation in the lower doses of the lungs. We wanted to assess the usefulness of the H-VMAT by comparing the radiation doses to the low dose areas of the lungs and the normal organs. Materials and Methods: A total of 26 patients who applied for a H-VMAT procedure were applied to the patient. The prescription dose applied to total dose 44 Gy from 22 divisions. For each patient, a plan was implemented with Conventional RT, VMAT and H-VMAT. Conventional RT was carried out in four to five fields each, considering the size, location, shape, and location of the PTV. In the case of a VMAT plan, the two Half ARC, three Half ARC method and the two Full ARC were planned. The H-VMAT was planned by adding two Static fields in the VMAT, taking into account the dose of the lung and the tolerance dose of the organs. Results: In the NSCLC, the lung doses $V_5$ and $V_{10}$ of the lungs except for the treatment plan volume were the lowest with $55.40{\pm}13.39%$ and $32.05{\pm}11.37%$ of H-VMAT. And, in the SCLC, the lung doses of V5 and V10 were the lowest at $64.32{\pm}16.15%$ and $35.50{\pm}9.91%$, respectively. The spinal dose of VMAT in NSCLC was $21.15{\pm}4.02Gy$, which was 7.94 Gy lower than other treatment methods. The lowest spinal dose was delivered at $19.72{\pm}1.82Gy$ for SCLC. The mean dose delivered to the esophagus was also $17.44{\pm}2.04Gy$ and $17.84{\pm}9.20Gy$ in SCLC and NSCLC, respectively. Conclusion: When comparing the value of the surrounding normal organ dose, the VMAT showed that less doses were transmitted from the heart, esophagus and spinal cord than the rest of the treatment plan. However, it was similar to VMAT in normal organs except for the spinal cord. VMAT has increased doses of some normal organs but did not exceed the tolerance dose. It showed a low value in $V_5$, $V_{10}$. When comparing Conventional RT, VMAT, and H-VMAT, If the dose to the heart, esophagus and spinal cord is lower than the tolerance dose, it is thought to reduce the incidence of radiation pneumonia by applying H-VMAT that show the benefits of low doses of the lungs.

  • PDF

Evaluating efficiency of application the skin flash for left breast IMRT. (왼쪽 유방암 세기변조방사선 치료시 Skin Flash 적용에 대한 유용성 평가)

  • Lim, Kyoung Dal;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.49-63
    • /
    • 2018
  • Purpose : The purpose of this study is investigating the changes of treatment plan and comparing skin dose with or without the skin flash. To investigate optimal applications of the skin flash, the changes of skin dose of each plans by various thicknesses of skin flash were measured and analyzed also. Methods and Material : Anthropomorphic phantom was scanned by CT for this study. The 2 fields hybrid IMRT and the 6 fields static IMRT were generated from the Eclipse (ver. 13.7.16, Varian, USA) RTP system. Additional plans were generated from each IMRT plans by changing skin flash thickness to 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm. MU and maximum doses were measured also. The treatment equipment was 6MV of VitalBeam (Varian Medical System, USA). Measuring device was a metal oxide semiconductor field-effect transistor(MOSFET). Measuring points of skin doses are upper (1), middle (2) and lower (3) positions from center of the left breast of the phantom. Other points of skin doses, artificially moved to medial and lateral sides by 0.5 cm, were also measured. Results : The reference value of 2F-hIMRT was 206.7 cGy at 1, 186.7 cGy at 2, and 222 cGy at 3, and reference values of 6F-sIMRT were measured at 192 cGy at 1, 213 cGy at 2, and 215 cGy at 3. In comparison with these reference values, the first measurement point in 2F-hIMRT was 261.3 cGy with a skin flash 2.0 cm and 2.5 cm, and the highest dose difference was 26.1 %diff. and 5.6 %diff, respectively. The third measurement point was 245.3 cGy and 10.5 %diff at the skin flash 2.5 cm. In the 6F-sIMRT, the highest dose difference was observed at 216.3 cGy and 12.7 %diff. when applying the skin flash 2.0 cm for the first measurement point and the dose difference was the largest at the application point of 2.0 cm, not the skin flash 2.5 cm for each measurement point. In cases of medial 0.5 cm shift points of 2F-hIMRT and 6F-sIMRT without skin flash, the measured value was -75.2 %diff. and -70.1 %diff. at 2F, At -14.8, -12.5, and -21.0 %diff. at the 1st, 2nd and 3rd measurement points, respectively. Generally, both treatment plans showed an increase in total MU, maximum dose and %diff as skin flash thickness increased, except for some results. The difference of skin dose using 0.5 cm thickness of skin flash was lowest lesser than 20 % in every conditions. Conclusion : Minimizing the thickness of skin flash by 0.5 cm is considered most ideal because it makes it possible to keep down MUs and lowering maximum doses. In addition, It was found that MUs, maximum doses and differences of skin doses did not increase infinitely as skin flash thickness increase by. If the error margin caused by PTV or other factors is lesser than 1.0 cm, It is considered that there will be many advantages in with the skin flash technique comparing without it.

  • PDF

The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119 (AAPM TG-119 보고서를 통한 세기조절방사선치료(IMRT)와 부피적세기조절회전치료(VMAT)의 치료 전 환자별 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Kim, Jong-Ha;Park, Seung;Lee, Keun-Sub;Sohn, Seung-Chang;Shin, Young-Joo;Kim, Yon-Lae
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H&N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was $1.24{\pm}2.06%$ and $1.4{\pm}2.9%$ for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was $2.06{\pm}0.64%$ and $2.21{\pm}0.74%$ for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were $98.3{\pm}1.5%$ and the confidence limits were 3.78%. In case of VMAT, the average percentage were $98.2{\pm}1.1%$ and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

Dose Verification Study of Brachytherapy Plans Using Monte Carlo Methods and CT Images (CT 영상 및 몬테칼로 계산에 기반한 근접 방사선치료계획의 선량분포 평가 방법 연구)

  • Cheong, Kwang-Ho;Lee, Me-Yeon;Kang, Sei-Kwon;Bae, Hoon-Sik;Park, So-Ah;Kim, Kyoung-Joo;Hwang, Tae-Jin;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • Most brachytherapy treatment planning systems employ a dosimetry formalism based on the AAPM TG-43 report which does not appropriately consider tissue heterogeneity. In this study we aimed to set up a simple Monte Carlo-based intracavitary high-dose-rate brachytherapy (IC-HDRB) plan verification platform, focusing particularly on the robustness of the direct Monte Carlo dose calculation using material and density information derived from CT images. CT images of slab phantoms and a uterine cervical cancer patient were used for brachytherapy plans based on the Plato (Nucletron, Netherlands) brachytherapy planning system. Monte Carlo simulations were implemented using the parameters from the Plato system and compared with the EBT film dosimetry and conventional dose computations. EGSnrc based DOSXYZnrc code was used for Monte Carlo simulations. Each $^{192}Ir$ source of the afterloader was approximately modeled as a parallel-piped shape inside the converted CT data set whose voxel size was $2{\times}2{\times}2\;mm^3$. Bracytherapy dose calculations based on the TG-43 showed good agreement with the Monte Carlo results in a homogeneous media whose density was close to water, but there were significant errors in high-density materials. For a patient case, A and B point dose differences were less than 3%, while the mean dose discrepancy was as much as 5%. Conventional dose computation methods might underdose the targets by not accounting for the effects of high-density materials. The proposed platform was shown to be feasible and to have good dose calculation accuracy. One should be careful when confirming the plan using a conventional brachytherapy dose computation method, and moreover, an independent dose verification system as developed in this study might be helpful.