• Title/Summary/Keyword: 평가 알고리즘

Search Result 5,709, Processing Time 0.037 seconds

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

Effects on the continuous use intention of AI-based voice assistant services: Focusing on the interaction between trust in AI and privacy concerns (인공지능 기반 음성비서 서비스의 지속이용 의도에 미치는 영향: 인공지능에 대한 신뢰와 프라이버시 염려의 상호작용을 중심으로)

  • Jang, Changki;Heo, Deokwon;Sung, WookJoon
    • Informatization Policy
    • /
    • v.30 no.2
    • /
    • pp.22-45
    • /
    • 2023
  • In research on the use of AI-based voice assistant services, problems related to the user's trust and privacy protection arising from the experience of service use are constantly being raised. The purpose of this study was to investigate empirically the effects of individual trust in AI and online privacy concerns on the continued use of AI-based voice assistants, specifically the impact of their interaction. In this study, question items were constructed based on previous studies, with an online survey conducted among 405 respondents. The effect of the user's trust in AI and privacy concerns on the adoption and continuous use intention of AI-based voice assistant services was analyzed using the Heckman selection model. As the main findings of the study, first, AI-based voice assistant service usage behavior was positively influenced by factors that promote technology acceptance, such as perceived usefulness, perceived ease of use, and social influence. Second, trust in AI had no statistically significant effect on AI-based voice assistant service usage behavior but had a positive effect on continuous use intention. Third, the privacy concern level was confirmed to have the effect of suppressing continuous use intention through interaction with trust in AI. These research results suggest the need to strengthen user experience through user opinion collection and action to improve trust in technology and alleviate users' concerns about privacy as governance for realizing digital government. When introducing artificial intelligence-based policy services, it is necessary to disclose transparently the scope of application of artificial intelligence technology through a public deliberation process, and the development of a system that can track and evaluate privacy issues ex-post and an algorithm that considers privacy protection is required.

Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification (하이퍼스펙트럴영상 분류에서 정준상관분류기법의 유용성)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.885-894
    • /
    • 2006
  • The purpose of this study is focused on the development of the effective classification technique using ultra multiband of hyperspectral image. This study suggests the classification technique using canonical correlation analysis, one of multivariate statistical analysis in hyperspectral image classification. High accuracy of classification result is expected for this classification technique as the number of bands increase. This technique is compared with Maximum Likelihood Classification(MLC). The hyperspectral image is the EO1-hyperion image acquired on September 2, 2001, and the number of bands for the experiment were chosen at 30, considering the band scope except the thermal band of Landsat TM. We chose the comparing base map as Ground Truth Data. We evaluate the accuracy by comparing this base map with the classification result image and performing overlay analysis visually. The result showed us that in MLC's case, it can't classify except water, and in case of water, it only classifies big lakes. But Canonical Correlation Classification (CCC) classifies the golf lawn exactly, and it classifies the highway line in the urban area well. In case of water, the ponds that are in golf ground area, the ponds in university, and pools are also classified well. As a result, although the training areas are selected without any trial and error, it was possible to get the exact classification result. Also, the ability to distinguish golf lawn from other vegetations in classification classes, and the ability to classify water was better than MLC technique. Conclusively, this CCC technique for hyperspectral image will be very useful for estimating harvest and detecting surface water. In advance, it will do an important role in the construction of GIS database using the spectral high resolution image, hyperspectral data.