• Title/Summary/Keyword: 편심질량

Search Result 24, Processing Time 0.015 seconds

Vibration Analysis of Separation Screen in a Recycling Plant of Moisturized Construction Wastes (고함수율의 건설폐기물 폐 토속에 포함된 이물질 선별을 위한 분리스크린의 진동해석)

  • Moon, Byung-Young;Bae, Hyo-Dong;Kwag, Kwang-Hun;Bae, Kee-Sun;Song, Ha-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.526-533
    • /
    • 2008
  • In this study, theoretical super screen vibration analysis has been carried out to predict the dynamic characteristics of interactive waste particles. In order to approach these problems, it is necessary to have a fundamental understanding the screening process and the process of both the remaining and the passed material on a screen with several interacting screen planes based on Soldinger(1999) was discussed. Here, the vibrating screen is composed of three assemblies such as screen, wastes guide, and supported screen as shown in Fig. 1. This model is regarded vibrator as the system of screen fixed tilt plates. Then materials(or particles) of different size is to be separated by using the eccentric vibrator and classifying tilt plates. As well moisturized construction wastes is more efficient to separate than moisture-less it. In processing separate mechanism, the more materials is light, the more staying time is long. Thus much lighter construction wastes(wood, Styrofoam, etc) and heavier materials are separated by staying time delay in a super screen. The design results, separation screen were able to know that small and larger particles are conspicuous difference each motion character according to trajectory particles, and small particles raise the probability in classifying tilt plates.

A Model for Simplified 3-dimensional Analysis of High-speed Train Vehicle (TGV)-Bridge Interactions (고속철도차량(TGV)-교량 상호작용의 단순화된 3차원 해석모델)

  • 최창근;송명관;양신추
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.165-178
    • /
    • 2000
  • The simplified model for 3-dimensional analysis of vehicle-bridge interactions is presented in this study. By using the analysis model which includes the eccentricity of axle loads and the effect of the torsional forces acting on the bridge, the more accurate analysis results of the behavior of the bridge can be obtained. The equations of kinetic energy, potential energy and damping energy are expressed by degrees of freedom of the vehicle and the bridge. And then by applying Lagrange's equations of motion, the equations of motion of the vehicle and the bridge are obtained. By deriving the equations of forces acting on the bridge considering the vehicle-bridge vertical interactions and also by identifying the position of vehicle as time goes by, mass matrix, stiffness matrix, damping matrix and load vector of vehicle-bridge system are constructed in accordance with the position of vehicles. Then using Newmark's β-method(average acceleration), the equations of motion for the total vehicle bridge system are solved.

  • PDF

Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment (엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계)

  • Kim, Byeong Jun;Boo, Kwang Suk;Kim, Heung Seob
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • The importance of engine vibration reduction is increasing as the vehicle interior noise becomes more serious due to higher output and lighten weight trends. Recently, the balance shaft attachment has been proposed as a representative method for the engine vibration reduction. The balance shaft is a device that cancels the vibrations generated in the reciprocating motion of the piston and the conrod by using an arbitrary eccentric mass, and can improve fuel efficiency and ride comfort at the same time. This paper proposes the unbalance amount and shape of the balance shaft to induce and offset the inertia force generated by the engine structure. The proposed two-shaped balance shaft was implemented as an ADAMS multi-body dynamics model, and the reduction of the inertial force in the actual behavior was confirmed through dynamic simulation.

Dynamic-Elastic Deformation Analysis for Precise Design of High Speed Press Machine (동적 탄성 변형 해석을 통한 고속프레스 정밀도 분석)

  • Kim, Heung-Kyu;Jung, Chul Jae;Cho, Chongdu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2014
  • Enhancing the working speed and positional accuracy of high-speed press machines is essential for improving the parts accuracy and productivity. However it is known that the positional accuracy decreases and the risk of parts failure increases as the working speed of press machine increases. Therefore predicting such problems during the stage of press structure design is necessary for precise design of high-speed press machines. In the present investigation, the dynamic-elastic deformation of press drive module parts with eccentric masses was examined by finite element analysis and experiment. Then the positional accuracy and parts failure of high-speed press machines was evaluated.