• Title/Summary/Keyword: 편심계수

Search Result 70, Processing Time 0.021 seconds

A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities (설계편심의 크기에 따른 비틀림 비정형 건물의 최종 정적편심 크기의 비교에 관한 연구)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.33-40
    • /
    • 2012
  • To reduce the vulnerability of torsional irregular buildings caused by seismic loads, the torsional amplification factor was introduced by the seismic code. This factor has been applied differently in a variety of seismic codes. In this study, the final static eccentricity, and the lateral and torsional stiffness ratios of buildings designed with different design eccentricities were compared. The increment of the torsional amplification factor resulted in a decrement of the final static eccentricity of the building. However, after reaching the maximum value of this factor, the final static eccentricity of the building increased again. The final static eccentricity of the building designed by multiplying the sum of the inherent and accidental eccentricity by the torsional amplification factor was zero or had a minus value, depending to the position of the vertical element.

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

A Study on the Relationship between the Eccentricity and the Level of Damage in the Seismic Response of Buildings with Plan Irregularities (지진 하중을 받는 평면 비정형 건물의 편심과 손상도의 상관관계에 대한 연구)

  • Jeong, Seoung-Hoon;Lee, Kwang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • Most previous research on the seismic response of structures with plan irregularities have focused on the relationship between the eccentricity and the amount of torsion. This approach cannot provide the direct relationship between the irregularity and the damage. Therefore, an investigation on the relationship between the eccentricities of buildings with plan irregularities and the damage index was performed. Inelastic dynamic time-history analyses were performed on one-story buildings with various eccentricities. For the damage assessment, a 3D damage index was adopted to reflect the effect of the bi-directional response and torsion. Based on the analysis results, buildings with eccentricities of 10%, 20% and 30% will suffer 3~5%, 13~18%, and 33~47% more damage than their regular counterparts, respectively.

Study on the Profile of Nut Bearing Surface and the Torque Coefficient of a High Strength Bolt Set (고장력 볼트세트의 자리면형상과 토크계수에 관한 연구)

  • Lee, Baek Joon;Sohn, Seung Yo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.143-150
    • /
    • 2000
  • Depending upon the combination of tolerances specified in the standards on bolt, nut and washer for high tension bolt sets, there arises center-to-center deviation between bolt and washer. This deviation nay cause loss of effective contact area between nut- and washer-faces, which leads to some dispersion of the torque coefficient K. By adapting circular arc surface instead of flat surface for the nut, it is shown through numerical analyses that the dispersion of the torque coefficient can be minimized. In this way, optimum radius of curvature of the nut bearing surface is proposed.

  • PDF

Modal Characteristics of a Structure with Stiffness and Damping Eccentricit (강성 및 감쇠 비대칭 구조물의 모드 특성)

  • 김진구;방성혁
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2002
  • In this study the modal characteristics and responses of an asymmetric structure with added viscoelastic dampers were investigated for design parameters such as eccentricity of stiffness and added dampers, the loss factor of the damping materials used. For modal characteristics, variation of the quantities such as natural frequencies, modal damping ratios, modal participation factors, and dynamic amplification factors were observed, and displacements at flexible and stiff edges, and at center of mass were obtained. Based on the results, the problem of the optimum damper distribution to minimize the torsional effects was addressed, and the proposed method for optimum damper distribution was applied to a multi-story structure to verify the applicability Finally the effect of viscous and viscoelastic dampers were compared by varying the loss factor of the viscoelastic material.

Reliability Analysis of Single and Continuous Span Composite Plate and Box Girder Designed by LRFD Method under Flexure (LRFD법으로 설계된 단경간 및 연속경간 강합성 플레이트 거더 및 박스 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong Ku;Roh, Joon Sik;Cho, Eun Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.183-193
    • /
    • 2008
  • The reliability analysis of simply-supported and continuous composite plate girder and box girder bridges under flexure was performed to provide a basic data for the development of LRFD c ode. The bridges were designed based on LRFD specification with newly proposed design live load which was developed by analyzing traffic statistics from highways and local roads. A performance function for flexural failure was expressed as a function of the flexural resistance of composite section and the design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 domestic structural steel samples were used. Several different values of bias factors for the live load moment from 1.0 to 1.2 were used. Due to the lack of available domestic measured data on the moment by permanent loads, the same statistical properties used in the calibration of ASHTO-LRFD were ap plied. The reliability indices for the composite girder bridges with various span lengths, different live load factors, and bias fact or for the live load were obtained by applying the Rackwitz-Fiessler technique.

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

An Experimental Study on the Buckling Strength of subject to Asymmetrical Double Curvature Stainless Steel Circular Hollow Section Beam-Columns (비대칭 이중곡률 스테인리스 원형강관 보-기둥의 좌굴내력에 관한 실험적 연구)

  • Jang, Ho Ju;Park, Jae Seon;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2009
  • This study is a series of experimental investigations of the buckling strengths of eccentrically compressed, cold-formed, stainless-steel, circular, hollow-section beam columns. The principal parameters that were used in this study were the slenderness ratios (Lk/r = 30, 50, 70) and the magnitude of eccentricity e(one way: 0, 25, 50, 75, and 100mm: the other way: 0, 12.5, 25, 37.5, and 50mm) on the asymmetrical end-moment of a double curvature. The objectives of the study were to obtain the maximum loads through an experiment and to compare the experimental behaviors with the analysis results. The ultimate buckling strength of the square section members were evaluated using a numerical method, in accordance with the bending moment-axial force(M-P) interaction curves. The behavior of each specimen was displayed in the form of the strength-displacement and moment-angle(M-$\theta$) relationship.