• Title/Summary/Keyword: 편광편이키잉

Search Result 2, Processing Time 0.015 seconds

Performance of multilevel polarization shift keying system (다중레벨 편광편이키잉 시스템의 성능)

  • 강석근;노윤환;주언경
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.1-8
    • /
    • 1997
  • In this paper, Stokes parameters which represent the states of polarization of transmitted light are determined by potential function, which is used to obtain signals points in a multidimensional Euclidean structure. And performance of multilevel polarization shift keying(POLSK) system using the obtained parameters is also represented and analyzed. As results, bit error rate of multilevel POLSK system using the potential function is shown to be lower than the conventional one using the distance matrix. And as number of levels increases, the number of photons per bit for bit error rate of 10$^{-9}$ is also increased linearly. The multilevel POLSK system, therefore, is an energy efficient modulation technque as compared with the convnetional ones.

  • PDF

Design of a New 3-D 16-ary Signal Constellation with Constant Envelope (상진폭 특성을 가지는 새로운 3차원 16진 신호성상도의 설계)

  • Choe, Chae-Cheol;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2149-2156
    • /
    • 2011
  • In this paper, design of a new 3-dimensional (3-D) 16-ary signal constellation with constant envelope is presented and analyzed. Unlike the conventional 16-ary constellations, all signal points of the new constellation are uniformly located on the surface of a sphere so that they have a unique amplitude level and a symmetrical structure. When average power of the constellations is normalized, the presented 16-ary constellation has around 11.4% increased minimum Euclidean distance (MED) as compared to the conventional ones that have non-constant envelope. As a result, a digital communication system which exploits the presented constellation has 1.2dB improved symbol error rate (SER). While signal points of the conventional constant-envelope constellation are not distributed uniformly on the surface of a sphere, those of the proposed constellation has a completely symmetric distribution. In addition, the new signal constellation has much lower computational complexity for practical implementation than the conventional one. Hence, the proposed 3-D 16-ary signal constellation is appropriate for the application to a communication system which strongly requires a constant-envelope characteristic.