• Title/Summary/Keyword: 펠티에 효과

Search Result 11, Processing Time 0.025 seconds

Investigation of the Cooling Performance Using Pottier Module (펠티에 소자를 이용한 냉각성능에 관한 연구)

  • Lee, Sang-Il;Choi, Jin-Wook;Lee, Dong-Ryul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1156-1161
    • /
    • 2006
  • This study is to evaluate the cooling performance of the Bonding type and Injection type of heat sink using three different kinds of industrial Peltier module by digital $LabView^{TM}$ measurement. Injection type of heat sink could be more efficient for the heat transfer than Bonding type, even with 30% more radiating surface area. In addition, the experimental results revealed that the sufficient power supplied was able to show the better cooling performance of Peltier module.

  • PDF

A Consideration on the Application of Thermoelectric Cooler to Obesity Therapy (열전 냉각장치의 비만치료 적용 방법론 고찰)

  • Ko, Yun-Seok;Lee, Woo-Cheol;Kim, In-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1437-1442
    • /
    • 2012
  • The contemporary peoples focus on treatment of obesity in order to prevent the adult disease and to manage the beauty. Although surgical treatment of obesity shows the reliable cure effect, it could cause side effects and has a disadvantage that postoperative recovery period is long. Accordingly, this paper compares and analyzes the non-operative treatments which can be of help to treat obesity. Also, it considers the obesity therapy based on the Peltier cooling system. And finally a basic control circuit based on Peltier module is designed for Peltier cooling-based obesity therapy system.

A Study of Thermoelectric Effect in Resistance Spot Welding of Aluminium Alloy (알루미늄 합금의 저항점용접에서의 열전 효과에 대한 연구)

  • ;K. T. Rie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.10-19
    • /
    • 1998
  • The erosion of electrode in spot welding of aluminium alloy by direct current is dependent on the electric polarity. The positive electrode is much more eroded than the negative one. To explain this phenomenon, Peltier effect has been generally accepted as a unique theory. In this study Peltier effect was evaluated by calculations on the basis of some references and experiments. The difference of heat generated by Peltier effect on both electrode surfaces was, however, only 4% of total heat generated during wel- ding. Because of insufficient explanation, Kohler theory, which is mainly affected by thin oxide film, was introduced. A theoretical calculation showed 17% of the temperature difference between the positive and negative electrode, in case "surface voltage" resulted from oxide film was 30% of total contact voltage. This revealed that the erosion of electrode could be more affected by Kohler theory than effect.an effect.

  • PDF

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Control of Junction Temperature in LEDs with Peltier Effect

  • Kim, Yun-Jung;Kim, Jeong-Hyeon;Han, Sang-Ho;Jeong, Jong-Yun;Kim, Hyeon-Cheol;Gang, Han-Rim;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.268-268
    • /
    • 2011
  • 열전소자를 사용하여 발광다이오드의 발열을 개선한다. 열전소자(Thermoelectric device: TED)의 펠티에효과(Peltier effect)를 이용하여 발광다이오드(Light Emitting Diodes: LED)의 접합온도 (Junction Temperature)를 제어한다. 열전소자의 구동 전력을 제어하여, 발광다이오드의 사용 전류에 대한 접합온도의 특성을 조사한다. 열전소자의 입력 전력 0.2W에 대하여, 일반 조명용 또는 표시 장치로 사용되는 1W급 고전력 LED를 정격전류(350 mA)로 구동할 때 접합온도를 최저 $69^{\circ}C$로 유지할 수 있다. 열전소자의 구동 전력이 0.2W일 때, 발광다이오드의 접합온도 $110^{\circ}C$에 대하여 최대 사용 가능 전류는 560 mA로 예측된다.

  • PDF

Bi 주입량에 따른 MOCVD 법을 이용한 Tellurium 박막 증착

  • Lee, Hong-Gyu;Jeong, Su-Hwan;Kim, Yong-Gyu;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.180-180
    • /
    • 2011
  • 재료의 양단간에 온도차를 주어 전압 또는 전류가 발생하는 지벡효과와 반대로 전위차를 주어 온도차를 유도하는 펠티에 효과를 열전효과로 일컫는다. 이 열전효과에 관한 연구는 그 특수성 때문에 1950년대 이후로부터 많은 관심을 받아왔다. 최근 들어 석유자원의 고갈 및 신재생에너지에 대한 관심의 고조와 맞물리면서 열전재료 및 소자에 연구는 더욱 활발히 이루어지고 있다. 전도성이 있는 모든 물질은 열전효과를 가지는 데, 그 중 Bi-Te 합금계의 열전 물질은 상온에서 가장 우수한 열전성능지수를 가지는 것으로 보고되어, 이를 이용한 열전 재료에 대한 많은 연구가 이루어져 왔다. 현재 상용화된 열전소자는 Bi-Te bulk를 이용하여 제조되고 있으나 열전성능지수의 한계를 극복하기 위해 나노구조화, 박막화시키는 연구가 활발히 진행되고 있다. 특히 박막화를 통해 열전소자의 상용화 및 양산화에 일조할 수 있을 것으로 예상된다. 하지만 열전소자의 양산화를 위해서는 대량생산에 용이한 증착공정이 개발되어야 한다. 증착공정 중 가장 양산화에 유리한 공정이 MOCVD (metal organic chemical vapor deposition)라고 생각되지만 이를 위해선 전구체의 특성 평가 및 공정개발이 필요하다. 따라서 본 연구팀은 MOCVD 공정을 이용하여 저온, 저압에서 Bi-Te 합금계의 박막 성장에 관한 연구를 수행하였다. 또한 적외선 분광 시스템을 활용하여 여러 전구체 중 최적의 Bi, Te 전구체 조합을 선별해내었다. 이 과정 속에서 Te 전구체의 독특한 분해특성 및 증착특성을 확인하였고, 이러한 특성을 조절하기 위해 Bi 전구체가 중요한 역할을 한다는 것을 확인하였다.

  • PDF

Control of Heat Temperature in Light Emitting Diodes with Thermoelectric Device (열전소자를 이용한 발광다이오드의 발열 온도 제어)

  • Han, S.H.;Kim, Y.J.;Kim, J.H.;Kim, D.J.;Jung, J.Y.;Kim, S.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.280-287
    • /
    • 2011
  • The heat temperature of a light emitting diode (LED) is investigated with the thermoelectric device (TED). The Peltier effect of the thermoelectric device is used to control the heat radiation and the junction temperature of high-power LEDs. For the typical specific current (350 mA) of high-power (1 W) LEDs, the LED temperature and the p-n junction temperature become $64.5^{\circ}C$ and $79.1^{\circ}C$, respectively. For 0.1~0.2 W driving power of TED, the LED temperature and the junction temperature are reduced to be $54.2^{\circ}C$ and $68.9^{\circ}C$, respectively. As the driving power of the TED increases over 0.2 W, the temperature of LED itself and the junction temperature are increased due to the heat reversed from the heat-sink to LED. As the difference of temperature between LED and the heat-sink is increased, the quantity of reversed heat becomes larger and it results to degrade the cooling capability of TED.

Development of a Drain-Type Electronic Dehumidifier Using Thermoelectric Element (열전소자를 이용한 배수형 전자제습기 개발)

  • Kang, Deok-Hong;Kim, Seong-Hwan;Kim, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3524-3528
    • /
    • 2007
  • In this study, the Peltier effect was applied to eliminate moistures in the air enclosed by a cabinet. We have developed the new electronic dehumidifier which has a new function of automatically evaporating the condensed water inner cabinet into the outside air. To obtain this function, the processes of dehumidification is that it condensed the moistures on the cold side heat sink and drained it into the hot side heat sink by the both gravitational and capillary forces and the droplets on the hot side heat sink surface was evaporated into the air outside the cabinet by the heat conducted through the hot side heat sink surface and the forced heat convection through the fan for cooling hot side heat sink. Compared to existing electronic dehumidifiers, this manufactured one showed a good performance that the electric power consumption for the same dehumidifying quantity was reduced by 50% compared with that of existing ones.

  • PDF

Study on Application of Cooling System of Automotive Engine for Thermoelectric Generator (열발전소자의 자동차 엔진 냉각시스템 적용 연구)

  • Park, Myungwhan;Hur, Taeyoung;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • Thermoelectric generator, which is known as using Seebeck effect, have been widely applied in many industrial parts, for instance, from submarine to equipments capable of producing hot or cooling water. Its usefulness was verified in terms of producing electric power using temperature difference and vice versa. Application on thermoelectric generator has been mainly forced on exhaust gas of automotive engine so far. In this study, the possibility was investigated whether electric power could be produced by using cooling water in automotive engine. As the result, it showed that electric power had differences depending on shapes of power auxiliary apparatus and, in this experiment, maximum of electric power was 1.5 voltage.

A Study on the Heat Sink with internal structure using Peltier Module in the Forced Convection (강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구)

  • Lee, Min;Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3410-3415
    • /
    • 2014
  • The heat generated by electronic devices can result in performance degradation. Therefore, a heat sink has been used to release the operating heat into the air outside. This study addressed a methodology for a heat sink with an inner tunnel. Under forced convection conditions, the heat transfer characteristics were different so the cooling and heating performances were studied for the heat sink with an inner tunnel. This was evaluated by performing the experimental test examining the heat transfer characteristics related to the variance in time and temperature distribution. In the cooling experiment, the temperature of the A-shape was lower than that of the B-shape, when the voltage was 10 V. These experimental results indicate the optimal cooling effect. In a heating experiment, the temperature of the A-shape was higher than that of the B-shape, when the voltage was 13 V. The experimental results showed that the temperature and efficiency of the A-shape were higher than those of the B-shape.