• Title/Summary/Keyword: 펠티에 냉각

Search Result 12, Processing Time 0.025 seconds

A Consideration on the Application of Thermoelectric Cooler to Obesity Therapy (열전 냉각장치의 비만치료 적용 방법론 고찰)

  • Ko, Yun-Seok;Lee, Woo-Cheol;Kim, In-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1437-1442
    • /
    • 2012
  • The contemporary peoples focus on treatment of obesity in order to prevent the adult disease and to manage the beauty. Although surgical treatment of obesity shows the reliable cure effect, it could cause side effects and has a disadvantage that postoperative recovery period is long. Accordingly, this paper compares and analyzes the non-operative treatments which can be of help to treat obesity. Also, it considers the obesity therapy based on the Peltier cooling system. And finally a basic control circuit based on Peltier module is designed for Peltier cooling-based obesity therapy system.

Investigation of the Cooling Performance Using Pottier Module (펠티에 소자를 이용한 냉각성능에 관한 연구)

  • Lee, Sang-Il;Choi, Jin-Wook;Lee, Dong-Ryul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1156-1161
    • /
    • 2006
  • This study is to evaluate the cooling performance of the Bonding type and Injection type of heat sink using three different kinds of industrial Peltier module by digital $LabView^{TM}$ measurement. Injection type of heat sink could be more efficient for the heat transfer than Bonding type, even with 30% more radiating surface area. In addition, the experimental results revealed that the sufficient power supplied was able to show the better cooling performance of Peltier module.

  • PDF

Development of Rapid Cooling System using Peltier Device (펠티에 소자를 이용한 급속 냉각시스템의 개발)

  • Jang, M.K.;Lee, G.H.;Noh, K.C.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.38-42
    • /
    • 2009
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. now then, cooling process spends the most of times in Injection molding cycle time. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating.

  • PDF

Investigation of the Optimal Cooling Performance Using Peltier Module and Heat Sink (펠티에 소자 및 히트싱크를 이용한 최적 냉각성능에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2006
  • This study is to experimentally evaluate the cooling performance of the Bonding type and Injection type of heat sink using three different kinds of industrial Peltier module by digital LabViewTM measurement. Injection type of heat sink could be more efficient for the heat transfer than Bonding type, even with 30% more radiating surface area. In addition, the experimental results revealed that the sufficient power supplied was able to show the better cooling performance of Peltier module. In order to verify the optimal cooling performance of the cooling device, two Peltier module, HMN 6040 and HMN 1550 with Bonding and Injection type of heat sink were used. The cooling performance with injection type of heat sink was 2.11% and 6.24% better than that with bonding type of heat sink under the HMN 6040 and HMN 1550, respectively.

  • PDF

A Study on the Heat Sink with internal structure using Peltier Module In the Natural and Forced Convection (자연대류와 강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구)

  • Lee, Min;Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4072-4080
    • /
    • 2014
  • The Peltier Module has been used to dissipate the heat from electronic devices and electronic components. In this module, a heat sink is used to release the operating heat into the air outside. This study addressed the heat transfer characteristics for a heat sink with an inner tunnel. Under forced and natural convection conditions, the heat transfer characteristics were different. Therefore, the cooling and heating performances were studied for the heat sink, which has an inner tunnel. The heat transfer conditions were also evaluated by performing an experimental test, which investigated the heat transfer characteristics related to the variance in time and temperature distribution. Experiments on the heat transfer characteristics of the heat sink were conducted based on the forced and natural convection and temperature distribution changes. In the cooling experiment, the A- and B-shaped cooling pin heat sinks decreased the temperature of the forced convection than the temperature of natural convection. In the forced and natural convection, the A- and B-shaped decreased to a minimum of $-15^{\circ}C$. Under the forced and natural convection conditions, A- and B-shaped cooling pin heat sinks decreased the temperature when the voltage was increased. In the heating experiment, the A- and B-shaped cooling pin heat sinks increased the temperature of the forced convection than the temperature of natural convection. In forced convection, when the voltage was $15^{\circ}C$, the temperature of the A-shaped cooling pin heat sink increased to $150^{\circ}C$, and the temperature of the B-shaped cooling pin heat sink increased to $145^{\circ}C$. Under forced and natural convection conditions, the A- and B-shaped cooling pin heat sinks showed an increase in temperature with increasing voltage.

A Study about the Modelling of Thermoelectric Cooler and the Thermal Transfer Analysis (열전 냉각기의 모델링 및 열전달 해석에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1291-1296
    • /
    • 2014
  • The thermoelectric cooler is receiving great interest because of advantages such as the precise temperature control capability, the compact and lightweight cooler, and the mechanical vibrationless structure which enhances the reliability compared with the existing vapor compression cooler. However, it is not easy to design the optimal thermoelectric cooler which appropriate to the application because the thermal analysis should be necessary required. Accordingly, this paper studies the methodology of the modelling, sizing and thermal analysis of the thermoelectric cooler using SINDA/FLUINT analysis tool.

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

A Study on the Warpage of Injection Molded Parts for the rapid Cooling and Heating Device (급속냉각·가열장치에 따른 사출성형품의 휨에 관한 연구)

  • Lee, Min;Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5074-5081
    • /
    • 2015
  • A method for improving the warpage of the plastic part is a method of removing residual stress of the plastic product. that a non-uniform cooling are appeared in the injection molding process make uniform cooling. this study was developed the Rapid heating and cooling device used peltier module for uniform cooling. Make the Rapid heating and cooling device(RCHD), for Traditional water cooling device(TWCD) method and the Rapid heating and cooling method warpage were compared and were analyzed and the materials used amorphous ABS polymer. various warpage were compared for the process parameters such as packing pressure, packing time, resin temperature, mold temperature, In the amorphous ABS polymer, TWCD method has higher warpage than RCHD method and show the result to be a bit more uniform cooling. The distribution state of the ABS polymer was confirmed Through the Scanning electron microscope. In the TWCD method the distribution state of the polymer be densely distributed, and RCHS method be distributed wider than TWCD method. this is that injection molded parts be seen that cooling was made uniformly, As the temperature of the mold is gradually progress, Particles of the polymer is increased this is that internal stress was reduced.

Control of Heat Temperature in Light Emitting Diodes with Thermoelectric Device (열전소자를 이용한 발광다이오드의 발열 온도 제어)

  • Han, S.H.;Kim, Y.J.;Kim, J.H.;Kim, D.J.;Jung, J.Y.;Kim, S.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.280-287
    • /
    • 2011
  • The heat temperature of a light emitting diode (LED) is investigated with the thermoelectric device (TED). The Peltier effect of the thermoelectric device is used to control the heat radiation and the junction temperature of high-power LEDs. For the typical specific current (350 mA) of high-power (1 W) LEDs, the LED temperature and the p-n junction temperature become $64.5^{\circ}C$ and $79.1^{\circ}C$, respectively. For 0.1~0.2 W driving power of TED, the LED temperature and the junction temperature are reduced to be $54.2^{\circ}C$ and $68.9^{\circ}C$, respectively. As the driving power of the TED increases over 0.2 W, the temperature of LED itself and the junction temperature are increased due to the heat reversed from the heat-sink to LED. As the difference of temperature between LED and the heat-sink is increased, the quantity of reversed heat becomes larger and it results to degrade the cooling capability of TED.

Development of Cloud Chamber by Using Peltier Device (펠티에 소자를 이용한 안개상자 개발)

  • Woo, Jong-Kwan;Kwon, Jin-Young;Park, Sang-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • In this research, we developed the newly cloud chamber apparatus by using Peltier device to apply nuclear physics experiment in high school or university. We observed the cosmic rays track by using the developed apparatus and a camcorder. And we compared and analyzed the acquired data. From the results, we acquired the following conclusions and suggestions : First, it is very difficult to observe the cosmic rays track in the typical cloud chamber because of the low frequency of it. But in the newly developed cloud chamber we can observe easily the cosmic rays track owing to the high frequency of it. Second, when we do the experiment with the newly developed apparatus, we found that the cosmic rays track happens well under the condition that the temperature of the upper place of cooling plate must be below 5$^{\circ}C$ with more than isopropanol $1.04{\times}10^{-5}$ $ml{\cdot}mm^{-3}$. Third, the newly developed apparatus will be improved to have better precision by controling the temperature of cooling plate in the cloud chamber by current intensity. Therefore we think that it is very useful to use the newly developed apparatus in the nuclear physics experiment in highschool or university.