• 제목/요약/키워드: 페리다이나믹스 이론

검색결과 3건 처리시간 0.015초

페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation)

  • 김재현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.297-303
    • /
    • 2014
  • 페리다이나믹스 이론과 이진분해 기법의 병렬연산을 이용하여 동적 균열진전 문제에 대한 애조인 형상 설계민감도 해석법을 개발하였다. 페리다이나믹스에서는 균열의 연속적인 분기를 다룰 수 있으며, Explicit 시간적분법을 채택한다. 설계민감도 해석은 애조인 변수법은 경로의존성 문제에는 적합하지 않으나 여기서는 응답해석의 경로를 이미 알고 있으므로 채택하여 사용할 수 있었다. 얻어진 해석적 설계민감도는 유한차분과 비교하여 그 정확성을 검증하였다. 유한차분법은 설계섭동량에 민감하여 비선형성이 강한 페리다이나믹스 문제에서 부정확한 설계민감도를 제시할 수 있다. 정확한 설계민감도 해석을 위해서는 이산화과정에서 $C^1$ 연속성을 가지는 체적율이 필요함을 알 수 있었다.

페리다이나믹스를 이용한 균열진전 문제의 구조 최적설계 (Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics)

  • 김재현;박수민;조선호
    • 한국전산구조공학회논문집
    • /
    • 제28권4호
    • /
    • pp.425-431
    • /
    • 2015
  • 본 논문에서는 균열 진전문제에 대하여 페리다이나믹스 이론을 이용하여 설계민감도 해석 및 구조 최적설계를 수행하였다. 페리다이나믹스는 해의 불연속성을 다루기 어려웠던 기존의 연속체 이론에 비해 균열 진전문제와 같은 불연속성을 가지는 문제를 자연스럽게 표현할 수 있다는 장점을 가지고 있다. 최적설계를 진행하기 위하여 애조인 변수법으로 설계민감도를 유도하였다. 특히 균열이 진전되더라도 애조인 변수법으로 계산된 변위장과 변형에너지에 대한 설계민감도 값은 유한차분법과 비교하여 매우 정확하고 효율적임을 보였다. 이를 바탕으로 간단한 인장응력 하의 균열진전 문제에 대하여 균열의 분기가 발생하는 위치를 조절하기 위하여 정해진 시간구간에서 변형에너지 값을 줄이는 방향으로 최적설계를 수행하였다. 최적의 재료분포로 해석을 수행한 결과 균열의 분기점을 늦출수 있음을 확인하였다.