• Title/Summary/Keyword: 페르마 점

Search Result 5, Processing Time 0.023 seconds

A Consideration on Verification and Extension of Fermat's Factorization (페르마 인수분해 방법의 확장과 검증에 대한 고찰)

  • Jung, Seo-Hyun;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.3-8
    • /
    • 2010
  • There are some efficient brute force algorithm for factorization. Fermat's factorization is one of the way of brute force attack. Fermat's method works best when there is factor near the square-root. This paper shows that why Fermat's method is effective and verify that there are only one answer. Because there are only one answer, we can start Fermat's factorization anywhere. Also, we convert from factorization to finding square number.

Development and application of teaching - learning materials for mathematically gifted students by using Fermat Point - ('페르마 점'을 활용한 중학교 수학 영재 교수·학습 자료 개발 및 적용)

  • Yoon, Joon-Ho;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.30 no.3
    • /
    • pp.335-351
    • /
    • 2016
  • The purpose of this study is to develop Project-Based Teaching-Learning materials for mathematically gifted students using a Fermat Point and apply the developed educational materials to practical classes, analyze, revise and correct them in order to make the materials be used in the field. I reached the conclusions as follows. First, Fermat Point is a good learning materials for mathematically gifted students. Second, when the students first meet the challenge of solving a problem, they observed, analyzed and speculated it with their prior knowledge. Third, students thought deductively and analogically in the process of drawing a conclusion based on observation. Fourth, students thought critically in the process of refuting the speculation. From the result of this study, the following suggestions can be supported. First, it is necessary to develop Teaching-Learning materials sustainedly for mathematically gifted students. Second, there needs a valuation criteria to analyze how learning materials were contributed to increase the mathematical ability. Third, there needs a follow up study about what characteristics of gifted students appeared.

An Area-efficient Design of ECC Processor Supporting Multiple Elliptic Curves over GF(p) and GF(2m) (GF(p)와 GF(2m) 상의 다중 타원곡선을 지원하는 면적 효율적인 ECC 프로세서 설계)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.254-256
    • /
    • 2019
  • 소수체 GF(p)와 이진체 $GF(2^m)$ 상의 다중 타원곡선을 지원하는 듀얼 필드 ECC (DF-ECC) 프로세서를 설계하였다. DF-ECC 프로세서의 저면적 설와 다양한 타원곡선의 지원이 가능하도록 워드 기반 몽고메리 곱셈 알고리듬을 적용한 유한체 곱셈기를 저면적으로 설계하였으며, 페르마의 소정리(Fermat's little theorem)를 유한체 곱셈기에 적용하여 유한체 나눗셈을 구현하였다. 설계된 DF-ECC 프로세서는 스칼라 곱셈과 점 연산, 그리고 모듈러 연산 기능을 가져 다양한 공개키 암호 프로토콜에 응용이 가능하며, 유한체 및 모듈러 연산에 적용되는 파라미터를 내부 연산으로 생성하여 다양한 표준의 타원곡선을 지원하도록 하였다. 설계된 DF-ECC는 FPGA 구현을 하드웨어 동작을 검증하였으며, 0.18-um CMOS 셀 라이브러리로 합성한 결과 22,262 GEs (gate equivalences)와 11 kbit RAM으로 구현되었으며, 최대 100 MHz의 동작 주파수를 갖는다. 설계된 DF-ECC 프로세서의 연산성능은 B-163 Koblitz 타원곡선의 경우 스칼라 곱셈 연산에 885,044 클록 사이클이 소요되며, B-571 슈도랜덤 타원곡선의 스칼라 곱셈에는 25,040,625 사이클이 소요된다.

  • PDF

A Lightweight Hardware Accelerator for Public-Key Cryptography (공개키 암호 구현을 위한 경량 하드웨어 가속기)

  • Sung, Byung-Yoon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1609-1617
    • /
    • 2019
  • Described in this paper is a design of hardware accelerator for implementing public-key cryptographic protocols (PKCPs) based on Elliptic Curve Cryptography (ECC) and RSA. It supports five elliptic curves (ECs) over GF(p) and three key lengths of RSA that are defined by NIST standard. It was designed to support four point operations over ECs and six modular arithmetic operations, making it suitable for hardware implementation of ECC- and RSA-based PKCPs. In order to achieve small-area implementation, a finite field arithmetic circuit was designed with 32-bit data-path, and it adopted word-based Montgomery multiplication algorithm, the Jacobian coordinate system for EC point operations, and the Fermat's little theorem for modular multiplicative inverse. The hardware operation was verified with FPGA device by implementing EC-DH key exchange protocol and RSA operations. It occupied 20,800 gate equivalents and 28 kbits of RAM at 50 MHz clock frequency with 180-nm CMOS cell library, and 1,503 slices and 2 BRAMs in Virtex-5 FPGA device.

A small-area implementation of public-key cryptographic processor for 224-bit elliptic curves over prime field (224-비트 소수체 타원곡선을 지원하는 공개키 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1083-1091
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 224-bit elliptic curves over prime field defined by NIST. Scalar point multiplication that is a core arithmetic function in elliptic curve cryptography(ECC) was implemented by adopting the modified Montgomery ladder algorithm. In order to eliminate division operations that have high computational complexity, projective coordinate was used to implement point addition and point doubling operations, which uses addition, subtraction, multiplication and squaring operations over GF(p). The final result of the scalar point multiplication is converted to affine coordinate and the inverse operation is implemented using Fermat's little theorem. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 2.7-Kbit RAM and 27,739 gate equivalents (GEs), and the estimated maximum clock frequency is 71 MHz. One scalar point multiplication takes 1,326,985 clock cycles resulting in the computation time of 18.7 msec at the maximum clock frequency.