• Title/Summary/Keyword: 페닐알코올 갈락토사이드

Search Result 2, Processing Time 0.016 seconds

Optimal Conditions for Phenylethanol Galactoside Synthesis using Escherichia coli β-Galactosidase (대장균 베타-갈락토시데이즈를 이용한 Phenylethanol Galactoside 합성 조건의 최적화)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-106
    • /
    • 2021
  • To circumvent the skin problem from phenylethanol (PhE), we have studied on the enzymatic synthesis of phenylethanol galactoside (PhE-gal) as an alternative to PhE. Base on the previous study, we optimized the reaction conditions for PhE-gal synthesis from PhE using E. coli β-galactosidase (β-gal). The optimal amount of β-gal, PhE concentration, pH, and temperature for PhE-gal synthesis were 0.45 U/ml, 1%, 8.0, 40℃, respectively. Under these conditions, about 81.9 mM PhE was converted into about 47.4 mM PhE-gal, in which the conversion yield was about 57.9%. Meanwhile, when the reaction mixture containing PhE and PhE-gal was mixed and fractionated with water-immiscible solvent (EA or MC), it was observed that PhE-gal was distributed in water phase, and PhE was distributed in solvent phase. Additionally, PhE-gal was clearly distributed into water phase when MC was used, but PE-gal was not when EA was used. In the future, we are planning to carried out the continuing study on developing an alternative cosmetic preservative using PhE-gal.

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1323-1329
    • /
    • 2020
  • To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.