• Title/Summary/Keyword: 페난쓰렌

Search Result 1, Processing Time 0.014 seconds

Role of Electrode Reaction of Electrolyte in Electrokinetic-Fenton Process for Phenanthrene Removal (동전기-펜턴 공정에서 전해질의 전극반응이 처리효율에 미치는 영향)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • The effects of electrolytes were investigated on the removal efficiency when several different electrolytes were used to change the electrode reaction in an electrokinetic (EK)-Fenton process to remediate phenanthrene-contaminated soil. Electrical potential gradient decreased initially due to the ion entrance into soil and then increased due to the ion extraction from soil under the electric field. Accumulated electroosmotic flow was $NaCl>KH_2PO_4>MgSO_4$ at the same concentration because the ionic strength of $MgSO_4$ was the highest and $Mg(OH)_2$ formed near the cathode reservoir plugged up soil pore to inhibit water flow. When hydrogen peroxide was contained in electrolyte solution, removal efficiency increased by Fenton reaction. When NaCl was used as an electrolyte compound, chlorine ($Cl_2$) was generated at the anode and dissolved to form hypochlorous acid (HClO), which increased phenanthrene removal. Therefore, the electrode reaction of electrolyte in the anode reservoir as well as its transport into soil should be considered to improve removal efficiency of EK-Fenton process.