• Title/Summary/Keyword: 페난스렌

Search Result 4, Processing Time 0.017 seconds

Stenotrophomons maltophilia에 의한 방향족 화합물의 생분해

  • 최창석;박진희;김영식;이태진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.71-74
    • /
    • 2002
  • 다고리방향족 탄화수소를 페놀에 적응된 미생물을 이용하여 분해하고자 하였다. 분리된 Stenotrophomons maltophilia는 나프탈렌과 페난스렌을 탄소원 및 에너지원으로 이용하였으며 10mg/$\ell$의 나프탈렌과 0.9mg/$\ell$의 페난스렌이 완전히 분해되는데 지체기후 약 2일과 3일이 소요되었다. 나프탈렌, 페난스렌의 분해시 중간생성물로 chromatography 상에 새로운 피크들이 생성되었으며, 이러한 중간생성물을 파악하여 다고리 방향족 탄화수소의 분해경로를 모색하고자 하였다.

  • PDF

Sphingobacterium sp. SW-09 Effectively Degrades Phenanthrene, a Polycyclic Aromatic Hydrocarbon, in a Soil Microcosm (Sphingobacterium sp. SW-09에 의한 토양환경에서의 다환 방향족탄화수소인 페난스렌의 분해)

  • Son, Seung-Woo;Chang, Hey-Won;Kim, Sung-Kuk;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1511-1517
    • /
    • 2011
  • We isolated a potent phenanthrene-degrading bacterium from oil-contaminated soils of Suzhou, China, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) in a microcosm. Based on 16S rDNA sequencing, we identified this bacteria as Sphigobacterium sp. SW-09. By PCR amplification, we also identified catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation. Staphylococcus sp. KW-07, which has been identified in our previous study, showed potential for use in bioremediation of oil-contaminated soils. In this experiment, we compared the rate of phenanthrene-degradation between Staphylococcus sp. KW-07 and Sphingobacterium sp. SW-09 in a microcosm condition. Newly isolated Sphingobacterium sp. SW-09 showed a higher phenanthrene-degradation rate than that of Staphylococcus sp. KW-07 in soil microcosms. Together, our results suggest that the Sphingobacterim sp. SW-09 strain isolated from the Suzhou area may also be useful in bioremediation of PAH-contaminated soils.

Characteristics of Polycyclic Aromatic Hydrocarbons Degradation by Stenotrophomonas maltophilia (Stenotrophomonas maltophilia에 의한 방향족 화합물의 분해특성)

  • Choi, Chang-Seok;Lee, Tae-Jin;Park, Jin-Hee;Kim, Young-Sik;Kim, Jin-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.130-137
    • /
    • 2003
  • In this study, Isolation was attempted to acquire a phenol utilizing bacterium for PAH degradation and to investigate the characteristics of PAH degradation. The isolate was identified by BIOLOG test as Stenotrophomonas maltophilia. Lower first order reaction constant was detected in the presence of lower phenol concentration. The yield coefficient of phenol was 0.1447mg cell/mg phenol. In the presence of naphthalene and phenol, phenol degradation was favorable. The isolate was capable of utilize naphthalene and phenanthrene as growth substrate but PAH, containing over 4-ring structure such as pyrene, was not degradable. The possible phenanthrene degradation pathway would be the addition of two hydroxy group on C-1 and C-2 position, followed by ortho cleavage, and then decarboxylation.

  • PDF

Thermodynamics of the Formation of Polynuclear Aromatics-Iodine Charge Transfer Complexes (여러고리 방향족 화합물과 요오드 사이의 전하이동 착물생성에 관한 열역학적 연구)

  • Oh Cheun Kwun;Jeong Rin Kim;Young Hoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.575-581
    • /
    • 1985
  • Ultraviolet spectrophotometric investigations have been carried out on the systems of benzene, naphthalene and phenanthrene with iodine in carbon tetrachloride. The results reveal the formation of the one to one molecular complexes. The equilibrium constants were obtained in consideration of that absorption maxima due to the formation of the charge transfer complexes shift to blue with increasing temperature. Thermodynamic parameters for the formation of the charge transfer complexes were calculated from these values. These results indicate that the stabilities of the complexes formed between polynuclear aromatics and iodine increase with the number of aromatic rings. This may be a measure of the relative basicities of polynuclear aromatics toward iodine, which is explained in terms of the resonance of the interaction between aromatics and iodine. The results in this study were, additionally, compared with those of the polymethylbenzene series to be discussed the reason for them.

  • PDF