• Title/Summary/Keyword: 퍼지 PID 제어

Search Result 275, Processing Time 0.018 seconds

Study on a Navigated Simulator of the Underwater Cleaning Robot (수중청소로봇의 운항 제어용 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Kang, Jin-Il;Hong, Sung-Yul;Park, Han-Il;Seo, Joo-No;Kim, Moon-Hwan;Gwon, Kyeong-Yeop
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.387-393
    • /
    • 2009
  • In this paper, a 3-D simulator was developed to estimate visually the performance of propelling and integrated control system of the underwater cleaning robot. Based on the dynamics analysis of the UCR, the 3-D model of the UCR was used in the simulator in which position and velocity are included Also, an input and control system using a joystick was developed, and the simulator was applied to the input and control of the simulator. Moreover, an integrated navigation control system was designed, and its performance was validated by a way-point simulator including a PI-based fuzzy control law.

Design of Self-Tuning Fuzzy Logic Controllers using Genetic Algorithms (유전알고리즘을 이용한 자기동조 퍼지 제어기의 설계)

  • Suh, Jae-Kun;Kim, Tae-Eun;Kwon, Hyuk-Jin;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1374-1376
    • /
    • 1996
  • In this paper We proposed a new method to generate fuzzy logic controllers through genetic algorithm(GA). In designing of fuzzy logic controllers encounters difficulties in the selection of optimized member-ship functions, gains and rule base, which is conventionally achieved by a tedious trial-and-error process. This paper develops genetic algorithms for automatic design of high performance fuzzy logic controllers which can overcome nonlinearities in many engineering control applications. The rule-base is coded in base-7 strings by generated from random function. Which can be presented in discrete fuzzy linguistic value, and using membership function with Gaussian curve. To verify the validity of this fuzzy logic controller it is compared with conventional fuzzy logic controller(FLC) and PID controller.

  • PDF

The Parameter Auto-tuning of the Reference Model Following Fuzzy Logic Controller (기준모델 추종 퍼지 제어기의 파라메터 자동 동조)

  • Roh, Chung-Min;Suh, Seung-Hyun;Ko, Bong-Woon;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1377-1379
    • /
    • 1996
  • In this paper, each parameter was identified by the gradient descent method to overcome difficulty deciding fuzzy rules of FLC for the unknown process and the type of membership Junctions. Usually PID or optimal control theories have been mostly usee in control field so far. However, optimal control requires much time for calculation because of adaptation for disturbance and nonlinearity. And intricate technique such as MRAS which can be realized only by an expert are limited to be used in the systems requiring rapid and precise response because of comparatively longer calculating time and complicateness. Gradient descent method is a method to find Z minimizing a function about a certain vector Z. And required output of FLC is gained using gradient approaching method in order to adapt control rule parameters of FLC. Simulation proved validation of this algorithm.

  • PDF

Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot (휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현)

  • Kong, Jung-Shik;Kim, Jin-Geol;Lee, Bo-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This paper is concerned with the control of multiple nonlinearities included in a humanoid robot system. A humanoid robot has some problems such as the structural instability, which leads to consider the control of multiple nonlinearities caused by driver parts as well as gear reducer. Saturation and backlash are typical examples of nonlinearities in the system. The conventional algorithms of backlash control were fuzzy algorithm, disturbance observer and neural network, etc. However, it is not easy to control the system by employing only single algorithm since the system usually includes multiple nonlinearities. In this paper, a switching Pill is considered for a control of saturation and a dual feedback algorithm is proposed for a backlash control. To implement the above algorithms, the system identification is firstly performed for the minimization of the difference between the results of simulation and experiment, and then the switching Pill gains are determined using genetic algorithm with some heuristic approach. The performance of the switching Pill controller for saturation and the dual feedback for backlash control is investigated through the simulation. Finally, it is shown that the implemented control system has good results and can be applied to the real humanoid robot system ISHURO.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.