본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.
본 논문에서는 퍼지 RBF네트워크의 학습 성능을 개선하기 위하여 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 퍼지 RBF 네트워크를 제안한다. 제안된 학습 알고리즘은 일반화된 델타 학습 방법에 퍼지 C-Means 알고리즘을 결합한 방법으로, 중간층의 노드를 자가 생성하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하여 학습 성능을 개선한다. 제안된 RBF 네트워크의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 40개의 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크와 기존의 퍼지 RBF 네트워크 보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.
본 논문에서는 ART2 알고리즘을 이용하여 질병을 도출하고 증상의 차이를 구분하기 위해서 애매한 증상의 정도를 퍼지 추론 방법에 적용하여 더욱더 정확한 질병 상세를 도출할 수 있는 개선된 자가진단 시스템을 제시한다. 본 논문에서 제안한 방법을 전문의에게 분석을 의뢰한 결과, 본 논문에서 제안된 자가진단 시스템 방법이 이전의 방법보다, 지능형 자가 보조 진단 시스템으로서 사용자에게 더욱 효과적인 도움을 줄 수 있는 가능성을 확인하였다.
웹 검색 엔진의 검색 결과를 클러스터링하는 후처리 클러스터링 알고리즘은 그 특성상 일반적인 클러스터링 알고리즘과는 다른 요구조건을 갖는다. 본 논문에서는 이러한 후처리 클러스터링 알고리즘의 요구조건들을 최대한 만족하는 새로운 클러스터링 알고리즘을 제안하고자 한다. 제안된 Fuzzy Concept ART는 무서 클러스터링에 있어 여러 가지 장점을 갖는 개념 벡터와 실시간 클러스터링 알고리즘으로 알려진 Fuzzy ART를 퍼지이론에 기반하여 결합한 형태로써, 후처리 클러스터링뿐 아니라 범용의 클러스터링 알고리즘으로도 응용이 가능하다.
본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.
본 논문에서는 혼합가스의 종류를 구분하고 농도를 추정하기 위하여 퍼지 ARTMAP 신경회로망과 퍼지 ART 신경회로망을 각각 사용하였다. 온도변환 구동방식의 반도체식 가스센서를 이용하여 $NH_3,\;H_2S$, 그리고 그들의 혼합가스에 대해서 데이터를 획득하였고, 데이터들을 제안한 패턴인식방법의 입력으로 사용하기 위해서 전 처리 과정을 통해 데이터들의 차원을 줄여주었다. 실험을 통해서 본 논문에서 사용한 방법이 이전의 다른 방법들과 비교하여 학습시간을 줄이면서 좀더 안정된 농도 추정 성능을 보여줌을 확인하였다.
본 논문에서는 HSI 정보와 신경 망의 비지도 학습 방법인 ART2 알고리즘을 이용하여 신 차량 번호판을 인식하는 방법을 제안한다. 제안된 방법은 차량의 영상에서 번호판 영역을 추출하는 부분과 추출된 번호판 영역의 문자를 인식하는 부분으로 구성된다. 본 논문에서는 차량 번호판 영역을 추출하기 위해 HSI 컬러 모형의 Hue 정보를 이용하여 차량 번호판 영역을 추출하고 개선된 퍼지 이진화 방법을 적용하여 추출된 차량 번호판 영역으로부터 문자를 포함한 특징영역을 이진화한 후에 4-방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드를 인식하기 위해 잡음과 훼손에 비교적 강한 ART2 알고리즘을 적용한다. 제안된 방법의 차량 번호판 추출 및 인식성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 차량 번호판의 추출 방법보다 번호판 영역의 추출률이 개선되었다. 또한 ART2 알고리즘을 적용하여 신 차량 번호판을 인식하는 것이 효율적임을 확인하였다.
음악 연구에 따른 컴퓨터의 역할이 점차 중요한 비중을 차지함에 따라 보다 효과적인 악보 인식 방법이 요구된다. 기존의 악보 인식 방법에서는 특정 수정 프로그램에서 만든 악보만 그 프로그램에서 재수정과 재생이 가능하다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 이미 작성 되어있는 악보들을 자동으로 인식하고 재생을 할 수 있는 방법을 제안한다. 제안된 악보 인식 방법은 수평 히스토그램을 이용하여 악보 이미지의 오선을 제거한 후, Grassfire 알고리즘을 적용하여 잡음을 제거하고 악보 구성 기호들을 추출한다. 추출된 악보 구성 기호들은 악보 구성 기호의 특징을 이용하여 음표와 쉼표, 그 외의 기호들로 분리한다. 분리된 음표 기호들은 박자마다 다른 음표 형태의 특징을 이용하여 다시 세밀하게 분리하고 쉼표와 그 외의 기호들은 퍼지 ART 알고리즘을 적용하여 인식한다. 인식된 악보 구성 기호들을 이용하여 각각 정보를 저장하고 향후에 악보 구성 기호에 해당하는 음의 재생을 용이하게 한다. 제안된 악보 인식 방법의 성능을 평가하기 위해 50장의 악보 영상을 대상으로 실험한 결과, 본 논문에서 제시한 악보 영상의 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.
본 논문에서는 복부 초음파 영상에서 Ends_in Search Stretching 기법을 적용하여 명암 대비를 강조한 후, 이진화, 영역 레이블링 기법, 잡음 제거를 통해 근막을 추출하고, 근막 영역의 하단 경계선을 기준으로 Cubic Spline 보간법을 적용하여 복부 근육의 근막 하단 영역을 추출한다. 복부 초음파 영상에서 추출된 근막 하단 영역을 이용하여 근막 영역을 제거한 후, 거리 기반 퍼지 ART 알고리즘을 적용하여 충수 후보 영역을 추출한 다. 추출된 충수 후보 영역에 침식 연산과 영역 레이블링 기법을 적용하여 충수를 추출한다. 제안된 방법을 복부 초음파 영상을 대상으로 실험한 결과, 기존의 충수 추출 방법보다 객관적이고 효율적으로 충수와 소장의 명암도 차이를 구별할 수 있어 충수 영역이 이전의 방법 보다 비교적 정확히 추출되는 것을 영상의학과 관련 전문의를 통해 확인하였다.
최근 자신의 건강에 대한 관심이 고조되고 있는 반면, 현재 대부분 On-line에서 제공되는 진단 서비스 시스템은 질병 명을 이용하여 질병에 대한 처방이나 민간요법 등을 제시하고 있다. 이에 질병에 대해 전문지식이 부족한 일반인들이 이용하기에는 어려움이 있다. 따라서 본 논문에서는 On-line에서 퍼지 ART 알고리즘을 이용하여 사용자가 제시한 증상을 바탕으로 이미 학습되어진 질병의 증상과 비교하여 신경망을 통해 유사도가 높은 상위 3개의 질병을 도출한다. 도출된 질병에 대해 질병의 전체적인 증상과 동의보감에서 제시한 민간요법을 결과로 출력한다. 질병 데이터베이스는 서울대학교에서 교육용으로 출판한 가정의학(家庭醫學)을 기초로 동의보감과 한방의학백과서적을 통해 한의학 전문의의 검증을 거쳐 생성하였다. 그리고 본 시스템은 전문의의 상담시스템을 지원한다. 전문의의 상담시스템을 이용하여 자택 및 직장에서 편리하게 전문의의 진료와 소견을 받을 수 있도록 하였다. 전문의 상담 시스템은 전문의가 서버에 접속한 상태에서 사용자의 진로 신청으로 연결되며, 텍스트 데이터 및 기존의 진료기록이 있다면 이를 기반으로 전문의의 진단을 유도하도록 한다. 제안된 한방 자가 진단 시스템을 한의학 전문의가 분석한 결과 기존의 질병 진단 시스템 보다 일반성이 개선된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.