Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.4
s.310
/
pp.113-122
/
2006
In this paper, we propose a fuzzy method to control bit-rate in the DCT Domain. The method consists of a bit-rate allocation with fuzzy measures and a least-distortion bit-rate reduction. Fuzzy measures are calculated by the code length, the discontinuity ambiguity, and the neighborhood momentum in each DCT block. These measures are summed with weights and form a reduction fuzziness to indicate the degree of preferable reduction. Using the reduction fuzziness. each DCT block is filtered by the least-distortion reduction method to adjust the bit-rate for the target bandwidth. In the experiment, we show the results that the transcoded video quality by the method is better and the bandwidth is more regular than those of existing methods in both visually and quantitatively.
In this paper, we suggest the "Fuzzy Behavior Knowledge Space(FBKS)" and explain how to utilize the FBKS when aggregating decisions of individual classifiers. The concept of "Behavior Knowledge Space(BKS)" is known to be the best method in the context that each classifier offers only one class label as its decision. However. the BKS does not considers measurement value of class label. Furthermore, it does not allow the heuristic knowledge of human experts to be embedded when combining multiple decisions. The FBKS eliminates such drawbacks of the BKS by adapting the fwzy concepts. Our method applies to the classification results that contain both class labels and associated measurement values. Experimental results confirm that the FBKS could be a very promising tool in pattern recognition areas.
본 논문에서는 애매성을 고려한 이론을 적용하여 유사도를 측정한 후 퍼지 관계 행 렬을 생성하여 인식을 행하는 방법을 제안하고자 한다. 인식 시스템은 모델과 입력 영상의 특징값을 정합하여 행하게 되는데 이때 얼마나 유사한가를 계산하는 유사도 측정은 대단히 중요한 작업중의 하나가 된다. 이를 위해 톨이론과 퍼지이론의 일치도 연산을 이용하여 유 사도를 측정하며, 퍼지 관계 행렬을 생성하여 정합을 행하고자 한다. 제안한 알고리즘에 대 해 3차원 물체와 얼굴 영상을 대상으로 실험을 수행하였으며 이를 통해 본 논문의 유용성을 입증하고자 한다.
Journal of the Korean Institute of Intelligent Systems
/
v.9
no.4
/
pp.375-383
/
1999
사용자가 최소의 이해와 수정 노력으로 적합한 컴포넌트를 선택할수 있는 방안이 요구된다, 따라서 본 논문에서는 컴포넌트의 재사용도 측정을 위한 혼합적 척도를 제안한다. 현업에서의 연구와 경험을 통해서 증명된 객관성 있는 척도들을 측정인자로 설정한다. 러프집합을 이용하여 각측정인자들이 컴포넌트 재상요에 미치는 영향의 정도를 평가하고 각 측정인자들의 상대적 중요도를 구한다, Sugeno의 퍼지적분을 이용하여 측정인자들의 중요도와 측정값들을 종합함으로써 컴포넌트들의 재사용도를 측정한다. 마지막으로 제안된 ordinal scale과 ratio scale에 따름을 보여준다.
Journal of the Korea Society of Computer and Information
/
v.12
no.6
/
pp.167-175
/
2007
Fuzzy logic is used to represent qualitative knowledge and provides interpretability to a controlling system model in bioinformatics. This paper focuses on a bioinformatics data classification which is an important bioinformatics application. This paper reviews the two traditional controlling system models The sequence-based threshold controller have problems of optimal range decision for threshold readjustment and long processing time for optimal threshold induction. And the binary-based threshold controller does not guarantee for early system stability in the GPCR data classification for optimal threshold induction. To solve these problems, we proposes a fuzzy-based threshold controller for ART1 clustering in GPCR classification. We implement the proposed method and measure processing time by changing an induction recognition success rate and a classification threshold value. And, we compares the proposed method with the sequence-based threshold controller and the binary-based threshold controller The fuzzy-based threshold controller continuously readjusts threshold values with membership function of the previous recognition success rate. The fuzzy-based threshold controller keeps system stability and improves classification system efficiency in GPCR classification.
Journal of the Korean Institute of Intelligent Systems
/
v.4
no.1
/
pp.13-23
/
1994
실용적인 퍼지 데이타베이스 시스템을 구축하는데 장애 요인중의 하나는 근접관계와 같은 의미 데이타를 습득하는 것이다. 근접관계란 어떤 도메인에서 데이타들간의 근사 혹은 유사한 정도를 정량적으로 표현한 것이다.퍼지 데이타베이스 시스템은 부정확한 질의를 처리할때 이런 근접관계를 이용한다. 지금까지 근접도를 측정하는 체계적인 방법은 별로 알려진 것이 없고 대부분은 근접관계는 미리 주어진다는 가정하에 퍼지 데이타베이스를 연구하여 왔다. 본 논문에서는 퍼지 질의 처리에 필요한 근접관계 생성 방법을 제안한다. 제안된 방법은 퍼지 잡합의 퍼지척도 측정 이론에 기반을 두었기 때문에 간단하고 체계적이며, 각 데이타에 특정값만 부여함으로써 해당 도메인내의 데이타들과의 근접도를 자동적으로 구할 수 있다. 특히 조정 변수를 이용하여 도메인내의 근접도 간격을 조절할 수 있어 실제 응용분야에 맞게 조절할 수가 있다.퍼지 질의 처리를 위한 근접도 생성방법이 별로 발표되어 있지 않은 현 상황에서 본 논문에서 제시한 방법은 실용적인 퍼지 데이타베이스를 구현할때에 필요한 근접관계 관리 모듈에 사용될 수 있다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.145-149
/
1998
소프트웨어의 유지보수면에서, 재사용이 매우 중요시되고 있는 가운데, 사용자가 최소 노력으로 필요한 컴포넌트들을 선택 및 유사 컴포넌트들을 평가할 수 있는 방법이 필요하다. 따라서, 본 논문에서는 현업에서의 많은 연구와 실험을 통해서 그 타당성이 검증된 척도들을 측정 인자로 설정, 여기에 러프 집합으로써 각 측정 인자들의 중요도를 측정하고, 이러한 측정값들을 Sugeno의 퍼지 적분으로써 종합하여 컴포넌트의 재사용 가능도를 평가하여 재사용이 용이한 컴포넌트 순으로 사용자에게 제공할 수 있는 재사용 가능도 평가 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.389-391
/
2003
컴퓨터 학습의 군집화는 주어진 데이터를 서로 유사한 몇 개의 집단으로 묶는 작업을 수행한다. 군집화를 위한 유사도 결정을 위한 측도는 많은 기법들에서 매우 다양한 측도들이 사용되고 또한 연구되어 왔다. 하지만 군집화의 결과에 대한 성능측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고 애매한 경우가 많다. 퍼지 군집화는 이러한 애매한 군집화 문제에 있어서 융통성 있는 군집 결정 방안을 제시해 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 베이지안 학습을 통하여 군집화를 위한 퍼지 멤버 함수값을 구하였다. 본 연구에서는 최적의 퍼지 군집화 수행을 위하여 베이지안 학습 기반의 퍼지 규칙을 추출하였다. 인공적으로 만든 데이터와 기존의 기계 학습 데이터를 이용한 실험을 통하여 제안 방법의 성능을 확인하였다.
Fictitious experiment to control extrusion process was carried out using the fuzzy theory. Algorithm of the fuzzy logic controller(FLC) was made based on the general principles of extrusion. In the simulation, at first, thickness of extrudate was measured as feedback input variable. Secondly, a set point of screw speed was determined as output variable of extruder operating condition through FLC. Finally, the thickness of extrudate was controlled as a given set point. Barrel heater was simply controlled as on/off state, which was not fuzzy controlled.
Proceedings of the Korea Society for Simulation Conference
/
2000.11a
/
pp.186-191
/
2000
요에 함유된 여러 성분들의 영향에 의해 다양한 정적 특성을 나타내는 요분석용 스트립의 화학적인 변화 양상을 요분석 시스템을 사용하여 요분석용 스트립의 각 항목별 각 등급별을 정성적 및 반정량적 분석을 하기 위하여 퍼지 알고리듬을 제안하고, 퍼지 분류기를 구현한 후 구현된 분류기를 검증하기 위하여 시뮬레이션 하였다. 이를 위하여 다음과 같은 연구를 수행하였다. 표준시료를 사용하여 요분석용 스트립의 분광학적 분석에 의한 퍼지 입력 변수, 퍼지 멤버쉽함수 및 퍼지규칙을 생성하였다. 그리고 구현된 분류기를 사용하여 각 항목별과 각 등급별로 평가하였다. 평가 결과 요분석용 스트립의 항목별 음성과 양성의 판별에서는 우수한 결과가 나왔으나, 정량적 분석을 위한 각 항목별 등급의 분류에서는 측정값의 오차로 인해 최고 8%의 오차가 발생하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.