• 제목/요약/키워드: 퍼지 연상메모리

검색결과 5건 처리시간 0.023초

개선된 퍼지 연상 메모리를 이용한 영상 복원 (Image Restoration using Enhanced Fuzzy Associative Memory)

  • 조서영;민지희;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.133-135
    • /
    • 2004
  • 신경 회로망에서 연상 메모리(Associative Memory)는 주어진 자료에 대해 정보를 저장하고 복원하는 알고리즘이다. 본 논문에서는 학습된 영상의 정확한 분류와 왜곡된 영상의 복원 및 분류를 위해 기존의 퍼지 연상 메모리 알고리즘을 개선하였다. 기존의 퍼지 연상 메모리는 학습 데이터와 학습 원본과 같은 입력에 대해 우수한 복원 성능을 보이나 학습 데이터의 수가 증가할수록 그리고 왜곡된 입력에 대해 정확히 출력할 수 없고 복원 성능도 저하된다. 따라서 본 논문에서는 기존의 퍼지 연상 메모리 알고리즘을 개선하여 왜곡된 입력에 대해서도 원본 학습 데이터를 정확히 출력하고 복원하는 개선된 퍼지 연상 메모리 알고리즘을 제안하였다.

  • PDF

퍼지 인지 맵과 퍼지 연상 메모리를 이용한 오인진단 모델 (A Model for diagnosing Students′Misconception using Fuzzy Cognitive Maps and Fuzzy Associative Memory)

  • 신영숙
    • 인지과학
    • /
    • 제13권1호
    • /
    • pp.53-59
    • /
    • 2002
  • 본 논문은 퍼지 인지 맵과 퍼지 연상 메모리를 사용하여 열과 온도에 관한 학생들의 과학개념 이해에서 발생되는 오인을 진단할 수 있는 오인 진단 모델을 제시한다. 오인 진단 모델에서 퍼지 인지 맵은 과학현상에 대한 학생들이 가지는 선입개념들과 오인들을 인과관계로 표현할 수 있다. 또한 개념간의 인과관계를 기억할 수 있는 퍼지 연상 메모리를 통하여 오인의 원인들을 진단한다. 본 연구는 기존의 학습 오인을 진단하는 규칙기반 전문가 시스템의 한계성을 극복할 수 있는 새로운 방법을 제공하며, 교육분야의 다양한 영역에서 학습자들의 학습 진단을 위한 지능형 개인교수 시스템으로 적용될 수 있을 것이다.

  • PDF

퍼지 이론을 이용한 웹기반 학습오인 진단 시스템

  • 백현기;이현노;고영춘;하태현
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2004년도 춘계학술대회 디지털 컨버젼스(Digital Convergence)와 경영혁신
    • /
    • pp.15-24
    • /
    • 2004
  • 본 논문은 be동사에 관한 학생들의 영어개념 이해에서 발생되는 오인을 진단할 수 잇는 학습오인 진단 시스템을 제시한다. 학습오인 진단 시스템에서 퍼지 인진 맵은 영어에 대한 학생들이 가지는 선입개념들과 오인들을 인과관계로 표현하며, 개념간의 인과관계를 기억할 수 있는 퍼지 연상 메모리를 통하여 오인의 원인들을 진단한다. 본 연구는 기존의 학습 오인을 진단하는 규칙기반 전문가 시스템의 한계성을 극복할 수 있는 새로운 방법을 제공하며, 교육분야의 다양한 영역에서 학습자들의 학습 진단을 위한 학습오인 진단 시스템으로 적용될 수 있다.

  • PDF

자판 배열 특성을 이용한 Neuro-Fuzzy 한국어 철자 교정기의 구현 (An Implementation of Neuro-Fuzzy Korean Spelling Corrector Using Keyboard Arrangement Characteristics)

  • 정한민;이근배;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.317-328
    • /
    • 1993
  • 본 논문은 신경망과 퍼지 이론을 결합한 한국어 철자 교정기 KSCNN(Korean Spelling Corrector using Neural Network)에 대하여 기술한다. KSCNN은 퍼셉트론(perceptron) 학습을 이용한 연상 메모리(associative memory)로 구성되며 자판 배열 특성을 고려한 퍼지 멤버쉽 함수에 의해 신경망의 입력값을 정한다. 본 철자 교정기의 장점은 인지적인 방법으로 철자를 교정하기 때문에 기존의 VA나 BNA와는 달리 오류의 종류에 영향을 받지 않으며 교정된 철자나 후보자들에 대한 견인값(attraction value)을 측정하여 시스템의 신뢰도를 높일 수 있다는 데 있다. 또한, 본 논문은 실험을 통해서 퍼지 멤버쉽 함수에 의한 입력 노드의 활성화가 자판 배열특성을 고려할 수 있기 때문에 시스템의 성능을 향상시킨다는 사실을 보여준다.

  • PDF

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.51-55
    • /
    • 2020
  • 본 논문에서는 이미지 복원에 사용되는 기존의 FAM (Fuzzy Associative Memory)에 유사성 학습을 채택하여 개선된 FAM을 제안한다. 이미지 복원은 노이즈가 존재하는 버전에서 원 이미지에 가깝게 복원하는 것을 의미한다. 얼굴 인식과 같은 중요한 적용 문제에서 이 프로세스는 잡음에 강하고 견고하며 빠르며 확장 가능해야한다. 기존의 FAM 은 강력한 퍼지 제어를 통하여 도메인에 적용 할 수 있지만 실제 응용 프로그램에서는 용량 문제가 있지만 단순한 단일 계층 신경망이다. 유사성 측정은 복구 된 이미지와 원본 이미지 사이의 제곱 평균 오차를 최소화하기 위해 FAM 구조의 연결 강도와 관련이 있다. 제안된 알고리즘의 효과는 실험에서 랜덤 노이즈로 인한 오류 크기가 현저히 낮아지는 것을 확인하였다.