• 제목/요약/키워드: 퍼지 분류규칙

검색결과 97건 처리시간 0.029초

Kapur 방법과 퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식 (Nucleus Recognition of Uterine Cervical Pap-Smears using Kapur Method and Fuzzy Reasoning Rule)

  • 강경민;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.241-247
    • /
    • 2007
  • 자궁 경부 세포진 영상의 핵 추출을 위해서는 영상의 배경과 핵 그리고 세포질 영역의 구분이 중요하다. 또한 정상 세포핵과 암종 세포핵의 구분 및 인식을 위해서는 세포핵들의 형태학적 특징을 이용한 분류 기준을 세워야한다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵의 후보 영역과 핵을 추출하기 위해 현미경 400배율 확대 사진을 획득하는 과정에서 훼손된 컬러 영상을 복원하기 위한 방법으로 Lighting Compensation을 적용하여 영상을 보정한다. 그리고 배경 영역과 세포핵 영역을 구분하기 위해 영상의 R,G,B 영역의 히스토그램의 분포를 이용하여 배경을 제거한다. 배경이 제거된 영상을 그레이 영상으로 변환 한 후, 히스토그램 명암도의 값을 이용하여 세포핵 영역과 세포질을 분류하여 세포핵 영역을 추출한다. 그리고 Kapur 방법을 적용하여 세포핵 영역의 엔트로피 누적확률을 구한 후, 영상을 이진화 한다. Kapur 방법이 적용된 이진화 영상에서 세포핵 영역의 중심과 주위 화소를 비교하는 $3\times3$ 마스크를 적용하여 영상의 미세한 잡음을 제거 한 후, 8방향 윤곽선 추적 알고리즘을 적용하여 최종적으로 세포핵 영역을 추출한다. 추출된 세포핵의 영역을 분류 및 인식하는 과정으로 세포의 외각의 방향성 정보, 핵의 크기, 그리고 면적 비율의 특징을 이용하여 퍼지 소속 함수를 설계한 후, 소속 함수의 소속도를 구하고 퍼지 추론 규칙을 적용하여 자궁 경부 세포진 영상에서 정상 세포핵 및 암종 세포핵을 인식한다.

  • PDF

퍼지추론 기반 Polynomial RBF Neural Network 설계와 얼굴 인식으로의 적용 (The Design of Polynomial RBF Neural Network based on Fuzzy Inference and Its application to Face Recognition)

  • 김길성;이경희;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1889-1890
    • /
    • 2008
  • 본 연구에서는 퍼지 추론 메커니즘에 기반 한 Polynomial RBF Neural Network(p-RBFNN)를 설계하고 얼굴인식 문제로 적용하여 분류기로서의 성능을 분석한다. 제안된 p-RBFNN 구조는 FCM 클러스터링에 기반 한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. p-RBFNN 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 또한 제안된 p-RBFNN을 얼굴인식 문제로 적용하여 성능을 분석한다.

  • PDF

데이터 마이닝을 위한 퍼지 결정트리 (A Fuzzy Decision Tree for Data Mining)

  • 이중근;민창우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.63-65
    • /
    • 1998
  • 사회 전 분야에서 데이터가 폭발적으로 증가함에 따라 데이터를 이해하고 분석하는 새로운 자동적이고 지능적인 데이터 분석 도구와 기술이 필요하게 되었다. KDD(Knowledge Discovery in Databases)는 이러한 필요로부터 데이터에서 유용하고 이해 가능한 지식을 추출하는 연구이다. 데이터 마이닝(Data Mining)은 KDD에서 가장 중요한 단계로 데이터로부터 지식을 추출하는 단계이다. 데이터 마이닝에서 생성된 지식은 좋은 분류율을 가져야하고 이해하기 쉬워야한다. 본 논문에서는 퍼지 결정트리(FDT : Fuzzy Decision Tree)에 기반한 효율적인 데이터 마이닝 알고리즘을 제안한다. FDT의 각 링크는 속성(attribute) 값을 갖는 퍼지 집합이며, EDT의 각 경로는 퍼지 규칙을 생성한다. 제안된 알고리즘은 ID3의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법으로 히스토그램에 이루어진다. 마지막으로 제안된 방법의 타당성을 검증하기 위해 표준적인 패턴 분류 벤치마크 데이터에 대한 실험 결과를 보인다.

  • PDF

선형 행렬 부등식을 이용한 TS 퍼지 분류기 설계 (TS Fuzzy Classifier Using A Linear Matrix Inequality)

  • 김문환;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.46-51
    • /
    • 2004
  • 본 논문에서는 선형행렬 부등식을 이용한 TS 퍼지 분류기 설계 방법을 제안한다. TS 퍼지 분류기를 설계하기 위해 퍼지규칙의 후반부 파라메터가 분류기의 성능을 최대로 하도록 동정되어야 한다. 이러한 동정 문제를 해결하기 위해 볼록 최적화 기법이 사용되었다. 후반부 파라메터 동정 문제는 볼록 최적화 문제로 변환되며, 선형행렬 부등식으로 표현된다. 선형행렬 부등식으로 표현된 볼록 최적화 문제는 일반 고유값 문제로 근사화 되며, 일반 고유값 문제를 최적화함으로써 최소의 분류 에러를 가지는 최적의 후반부 파라메터가 결정된다. 제안된 분류기의 성능을 평가하기 위해 IRIS 데이터와 Wisconsin Breast Cancer Database 데이터에 대한 분류기의 성능을 모의 실험을 통해 확인하였다. 마지막으로, 모의 실험 결과 제안된 TS 퍼지 분류기의 성능의 우수성을 확인할 수 있었다.

퍼지추론을 이용한 감성처리 모델 (The Emotion Inference Model Based on Fuzzy Inference)

  • 손창식;황정식;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.325-328
    • /
    • 2004
  • 본 논문에서는 퍼지추론을 이용하여 인간의 내부 감성상태를 추론하고 불필요한 감성상태를 제거할 수 있는 방법을 나타내었다. 그리고 시스템 설계자의 주관적인 관점을 배제하여 보다 객관적인 감성추론을 위해 응용 심리학에서 주로 사용되는 색채심리를 바탕으로 규칙 베이스를 구성하였고, 실험에서 보다 정확한 감성분류를 위해 $\alpha$-cut을 적용하여 불필요한 감성상태를 제거하여 나타내었다.

  • PDF

퍼지 결정 트리를 이용한 효율적인 퍼지 규칙 생성 (Efficient Fuzzy Rule Generation Using Fuzzy Decision Tree)

  • 민창우;김명원;김수광
    • 전자공학회논문지C
    • /
    • 제35C권10호
    • /
    • pp.59-68
    • /
    • 1998
  • 데이터 마이닝의 목적은 유용한 패턴을 찾음으로써 데이터를 이해하는데 있으므로, 찾아진 패턴은 정확할뿐 아니라 이해하기 쉬워야한다. 따라서 정확하고 이해하기 쉬운 패턴을 추출하는 데이터 마이닝에 대한 연구가 필요하다. 본 논문에서는 퍼지 결정 트리를 이용한 효과적인 데이터 마이닝 알고리즘을 제안한다. 제안된 알고리즘은 ID3, C4.5와 같은 결정 트리 알고리즘의 이해하기 쉬운 장점과 퍼지의 표현력을 결합하여 간결하고 이해하기 쉬운 규칙을 생성한다. 제안된 알고리즘은 히스토그램에 기반하여 퍼지 소속함수를 생성하는 단계와 생성된 소속 함수를 이용하여 퍼지 결정 트리를 구성하는 두 단계로 이루어진다. 또한 제안된 방법의 타당성을 검증하기 위하여 표준적인 패턴 분류 벤치마크 데이터인 Iris 데이터와 Wisconsin Breast Cancer 데이터에 대한 실험 결과를 보인다.

  • PDF

부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계 (Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition)

  • 박건준;김길성;오성권;최원;김정태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

클라우드 컴퓨팅 환경에서 무감독학습 방법과 퍼지이론을 이용한 결합형 데이터 분류기법 (Coupled data classification method using unsupervised learning and fuzzy logic in Cloud computing environment)

  • 조규철;김재권
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권8호
    • /
    • pp.11-18
    • /
    • 2014
  • 본 논문은 무감독학습을 통한 데이터 분류기법인 ART에서 퍼지이론을 이용한 결합형 데이터 분류 방법을 제안한다. 무감독학습기법 기반의 데이터 분류 기술은 분류기술의 향상의 장점이 있지만, 처리성능이 저하된다는 단점이 있다. 민첩성 있는 대용량데이터 처리와 분류인식률을 만족하는 최적의 임계값 결정기법이 필요하지만, 이는 불확실성이 많이 따르기 때문에 두 가지를 고려하여 상호보완 할 수 있는 처리기법이 필요하다. 제안하는 기법은 무감독학습을 하기 위해 퍼지매개변수와 퍼지 규칙을 설계하여 최적의 임계값을 도출한다. 제안하는 기법의 성능평가를 위해 클라우드 컴퓨팅환경에서 G 단백질 연결 수용체(G protein coupled receptor, GPCR)데이터를 이용하여 실험하였으며, 실험결과는 높은 인식률과 낮은 처리시간을 통해 결합형 데이터 분류에 효과적임을 입증하였다.