This paper presents a methodology to forecast KOSPI index by extracting fuzzy rules based on the neural network with weighted fuzzy membership functions (NEWFM) and the minimized number of input features using the distributed non-overlap area measurement method. NEWFM classifies upward and downward cases of KOSPI using the recent 32 days of CPPn,m (Current Price Position of day n for n-1 to n-m days) of KOSPI. The five most important input features among CPPn,m and 38 wavelet transformed coefficients produced by the recent 32 days of CPPn,m are selected by the non-overlap area distribution measurement method. For the data sets, from 1991 to 1998, the proposed method shows that the average of forecast rate is 67.62%.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.1
/
pp.53-62
/
2023
Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.
본 논문에서는 얼굴, 지문 등의 생체특징을 안전하게 은닉하고 효과적으로 은닉정보를 추출할 수 있는 웨이블렛 기반 워터마킹 기법을 제안한다. 제안된 방법은 웨이블렛을 이용하여 워터마크 삽입위치를 결정하고 웨이블렛 변환된 영상과 배경영상간의 차와 삽입위치 주변의 영상에 분산값을 이용해 퍼지 함수를 이용하여 적응적 가중치 값을 결정한다. 은닉된 워터마크 데이터는 워터마크가 삽입된 영상에 웨이블렛 변환을 적용하여 효과적으로 생체특징을 추출한다. 제안된 방법의 타당성을 검증하기 위하여 워터마크 데이터인 생체특징의 은닉 전과 후의 특성분석과 워터마크 알고리즘이 생체 인식시스템에 미치는 영향을 평가하였다. 실험한 결과 제안된 방법은 효과적으로 생체정보를 은닉하고 생체인식률의 저하 없이 효과적으로 생체정보를 보호할 수 있음을 확인 할 수 있었다.
This study proposed new instance selection using neural network with weighted fuzzy membership functions(NEWFM) based on Takagi-Sugeno(T-S) fuzzy model to improve the classification performance. The proposed instance selection adopted weighted average defuzzification of the T-S fuzzy model and an interval selection, same as the confidence interval in a normal distribution used in statistics. In order to evaluate the classification performance of the proposed instance selection, the results were compared with depending on whether to use instance selection from the case study. The classification performances of depending on whether to use instance selection show 77.33% and 78.19%, respectively. Also, to show the difference between the classification performance of depending on whether to use instance selection, a statistics methodology, McNemar test, was used. The test results showed that the instance selection was superior to no instance selection as the significance level was lower than 0.05.
Journal of the Korea Society of Computer and Information
/
v.13
no.3
/
pp.179-187
/
2008
In this paper, we apply a set of algorithms to classily normal and cancer nucleus from uterine cervical pap-smear images. First, we use lightening compensation algorithm to restore color images that have defamation through the process of obtaining $1{\times}400$ microscope magnification. Then, we remove the background from images with the histogram distributions of RGB regions. We extract nucleus areas from candidates by applying histogram brightness, Kapur method, and our own 8-direction contour tracing algorithm. Various binarization, cumulative entropy, masking algorithms are used in that process. Then, we are able to recognize normal and cancer nucleus from those areas by using three morphological features - directional information, the size of nucleus, and area ratio - with fuzzy membership functions and deciding rules we devised. The experimental result shows our method has low false recognition rate.
Journal of the Korea Institute of Information Security & Cryptology
/
v.19
no.1
/
pp.125-133
/
2009
Security of biometric data is particularly important as the compromise of the data will be permanent. To protect the biometric data, we need to store it in a non.invertible transformed version. Thus, even if the transformed version is compromised, its valid biometric data are securely remained. Fuzzy vault mechanism was proposed to provide cryptographic secure protection of critical data(e.g., encryption key) with the fingerprint data in a way that only the authorized user can access the critical data by providing the valid fingerprint. However, all the previous results cannot operate on the fingerprint image with a few minutiae, because they use fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use adaptive degree of polynomial considering the number of minutiae. Also, we apply multiple polynomials to operate the fingerprint with a few minutiae. Based on the experimental results, we confirm that the proposed approach can enhance the security level and verification accuracy.
This study proposed signal processing techniques and neural network with weighted fuzzy membership functions(NEWFM) to detect epileptic seizure from EEG signals. This study used wavelet transform(WT), sequential increment method, and phase space reconstruction(PSR) as signal processing techniques. In the first step of signal processing techniques, wavelet coefficients were extracted from EEG signals using the WT. In the second step, sequential increment method was used to extract peaks from the wavelet coefficients. In the third step, 3D diagram was produced from the extracted peaks using the PSR. The Euclidean distances and statistical methods were used to extract 16 features used as inputs for NEWFM. The proposed methodology shows that accuracy, specificity, and sensitivity are 97.5%, 100%, 95% with 16 features, respectively.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.10
/
pp.2201-2206
/
2010
The shortage of fossil fuel drives researchers to find a new way to increases energy efficiency. In this paper, we propose a method to control the direction and speed of an air conditioner using a thermal image and fuzzy controlling method, which results in the increase of energy efficiency. The thermal image is first converted into a color temperature image which represents the temperature range from $24.0^{\circ}C$ to $27.0^{\circ}C$. The temperature image is divided into 5 columns and the distribution of them is used to analyze room temperature and control an air conditioner. The proposed method was applied to 300 by 400 thermal images. When the performance of the proposed method was compared to existing systems in energy efficiency, the proposed method was better than existing methods, which is clear from experimental results.
This paper presents an approach to classify normal and Ventricular Tachycardia/Ventricular Fibrillation(VT/VF) from the Creighton University Ventricular Tachyarrhythmia DataBase(CUDB) using the neural network with weighted fuzzy membership functions(NEWFM). In the first step, wavelet transform is used for producing input values which are used in the next step. In the second step, two numbers of input features are extracted by phase space reconstruction method and peak extraction method using coefficients produced by wavelet transform in the previous step. NEWFM classifies normal and VT/VF beats using two numbers of input features, and then the accuracy rate is 90.13%.
Journal of the Korea Institute of Information Security & Cryptology
/
v.15
no.2
/
pp.13-22
/
2005
To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.