• Title/Summary/Keyword: 퍼지 로직 시스템

Search Result 162, Processing Time 0.021 seconds

Comforts Evaluation of Car Seat Clothing (자동차 시트 표피재의 감성평가)

  • Kim, Joo-Yong;Lee, Chae-Jung;Kim, An-Na;Lee, Chang-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.12 no.1
    • /
    • pp.77-86
    • /
    • 2009
  • A comfort evaluation of car seat clothing has been proposed for high comforts interior seat clothing. Car seat covers have received wide spread attention due to their man-machine interface working. And then, it will be necessary for measurements on delicate basic mechanical-properties, which closely relate with human touch feeling of its materials. In this research, we have utilized $KES-FB^{(R)}$(Kawabata Evaluation System) series, $^ST300{(R)}$ analogue softness tester and friction tester for measurement a physical properties. In order to consider both kansei and physical properties on interior seat covers, we firstly have established subjective words of judgement for the seat covers. Secondly, related them to the objective measurement of physical properties. Each kansei-language has clearly defined as 'Softness', 'Elasticity', 'Volume' and 'Stickiness' for the adjectives of leather car seat covers. These technical terms have correlated to physical properties in other words, h (mm), bending moment ($gf^*$cm/cm), To-Tm (mm) and ${\mu}$. At this time, fuzzy logic has utilized to predict the value of kansei language through physical values. On the basis of this result, finally it is possible to predict quality index of car seat covers using neural networks technique. In short, we develop a quality evaluation system of car seat clothing combining four physical quantities with kansei engineering.

  • PDF

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.