• 제목/요약/키워드: 퍼지 글러스터링

검색결과 3건 처리시간 0.02초

변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정 (Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm)

  • 윤후병;정성종;안동언;두길수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

퍼지클러스터링 기반 의료 영상 워터마킹 (Fuzzy Clustering Based Medical Image Watermarking)

  • ;김종면
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권7호
    • /
    • pp.487-494
    • /
    • 2013
  • 의료 영상 워터마킹은 헬스케어 정보 시스템의 보안 서비스 분야에서 많은 주목을 받고 있다. 본 논문은 워터마킹을 삽입할 최적의 서버 블록 위치 선택을 위한 개선된 퍼지 클러스터링 기법, 이산 웨이블릿 변환 및 이산 코사인 변환을 분할된 회백질 의료 영상에 적용한 블라인드 의료 영상 워터마킹 기법을 제안한다. 모의실험결과, 제안한 워터마킹 기법은 기존의 기법들보다 PSNR과 M-SVD에서 우수한 성능을 보였다. 또한, 제안한 워터마킹 기법은 노이즈 첨가, 필터링, JPEG 압축, 블러링, 히스토그램 균일화, 크로핑과 같은 공격에서도 기존의 기법들보다 정규화된 연관성 값에서 보다 강인함을 보였다.

퍼지 클러스터링 기반의 국소평가 유전자 알고리즘 (Partially Evaluated Genetic Algorithm based on Fuzzy Clustering)

  • 유시호;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1246-1257
    • /
    • 2004
  • 유전자 알고리즘은 원하는 최적해를 찾기 위해서 개체 집단의 크기를 가능한 크게 유지하여야 한다. 하지만 실제 문제에서 개체의 적합도를 평가하는 것이 어려운 경우가 많기 때문에 큰 집단의 모든 개체에 대하여 적합도를 평가하는 것은 많은 시간과 비용을 요구한다. 이에 본 논문에서는 집단의 크기를 크게 유지하되 클러스터링에 의해 대표 개체만을 평가함으로써 효율을 높이는 퍼지 글러스터링 기반의 국소 평가 유전자 알고리즘을 제안한다. 나머지 개체들은 대표 개체로부터 간접적으로 적합도를 분배받는다. 다수의 집단에 소속되는 개체들의 경우, 하드 클러스터링 방법으로는 정확한 적합도 분배를 하기 어렵기 때문에 퍼지 c-means 알고리즘을 사용하였고, 클러스터 결과인 퍼지 소속 행렬에 의해 적합도를 배분하였다. 9개의 벤치마크 적합도 함수에 대하여 6가지 하드 클러스터링 알고리즘을 적용한 유클리디안 거리와 피어슨 상관계수에 의한 적합도 배분 방법과 본 논문에서 제안하는 방법을 비교 실천한 결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.